Максимальное количество оборотов двигателя. Сколько оборотов у бензопилы

Содержание

Максимальное количество оборотов двигателя. Сколько оборотов у бензопилы

Традиционно мы привыкли оценивать ходовые характеристики автомобилей мощностью двигателя, выраженной в лошадиных силах либо киловаттах. Однако в обычном ритме движения двигатель не нагружается на полную мощность. Максимальная мощность, отражаемая в технических характеристиках двигателей автомобилей, достигается при оборотах около 4000 об./минуту в дизельных и около 6000 об./минуту для бензиновых авто.

что такое максимальный крутящий момент двигателя

В случаях, когда необходимо придать автомобилю заметное ускорение, например, во время обгона, мы часто встречаемся с ситуацией, когда не получаем реальной отдачи от движка даже максимально утопив педаль акселератора. Именно в таких случаях на приемистость двигателя в первую очередь влияет крутящий момент, а не его максимальная мощность.

Момент – не мощность

Возможности силовых агрегатов по мощности оценивали еще с того самого момента, когда появились первые самоходные механизмы. Но мощность позволяет лишь частично охарактеризовать силу тяги того или иного мотора.

крутящий момент двигателя

Это легко заметно на ДВС одного класса. Так, на разных авто можно наблюдать, что динамические характеристики могут различаться. То есть одна машина ведет себя довольно резво уже на малых оборотах, а на другой, чтобы добиться такого же эффекта, нужно раскрутить маховик до почти максимальных оборотов.

Что такое крутящий момент двигателя автомобиля?

Если говорить по науке, то это физическая величина. Это произведение силы, которая прилагается к рычагу длиной в 1 м, и расстояния от оси, в которой вращается этот рычаг до точки, куда прилагается сила.

В школьном курсе физики эту величину называли «момент силы», а в курсах механики – «крутящий момент». Измеряется данная сила количеством Ньютонов на метр.

Крутящий момент двигателя – это такая величина, которая показывает силу тяги агрегата. Чем больше значение крутящего момента пройдет от двигателя на колеса, тем лучше и тем больший вес этот мотор может сдвинуть, и тем большее ускорение сможет развить этот автомобиль. Так, грузовые авто, тракторы, различные бульдозеры, спортивные машины очень нуждаются в моторах с высоким крутящим моментом.

Но эта сила, которая приходит с мотора к колесам, больше зависит даже не от характеристик двигателя. В большей степени зависимость здесь наблюдается от передаточных чисел трансмиссии. Так, чем выше передаточные числа, тем больший момент будет отдаваться на колеса при оборотах двигателя. Такая машина станет обладать более высокими динамическими характеристиками.

Крутящий момент2 Крутящий момент1 Крутящий момент3 Соотношение крутящего момента и оборотв в двигателе ВАЗ Крутящий момент4

Конструкция регуляторов RQ

Кулачковый вал ТНВД приводит в действие ступицу регулятора через гаситель колебаний. Два грузика (б) со своими кривошипами (7) крепятся на одном конце в ступице регулятора. Каждый грузик имеет свой собственный встроенный блок пружин (5). Когда грузики двигаются наружу под действием центробежной силы, то кривошипы преобразуют это круговое движение в осевое перемещение на скользящем болте (8). Это осевое перемещение передается к так называемому ползуну (9). Ползун, который может сдвигаться только по прямой линии, так как он удерживается направляющим стержнем (10) (штифтом), обеспечивает соединение между центробежным механизмом регистрации оборотов и управляющей рейкой посредством изменяемого шарнирного рычага. В изменяемом шарнирном рычаге имеется направляющая скользящего блока, а нижний конец рычага удерживается в скользящем блоке. Подвижный направляющий блок (13) направляется радиально Соединительным рычагом, который сам соединяется с рычагом управления (11) на том же самом валу. Рычаг управления передвигается рукой или через рычаги от педали акселератора.
Когда положение рычага управления изменяется, то направляющий блок перемещается, а шарнирный рычаг (12) наклоняется вокруг точки поворота на ползуне. Когда регулятор вступает в действие, то направляющий блок становится точкой поворота для шарнирного рычага (14). Воздействие направляющей скользящего блока и направляющего блока позволяет изменить коэффициент рычага для шарнирного рычага. Такое расположение обеспечивает, что для регулировки управляющей рейки (1) всегда имеется достаточное усилие даже в области низких оборотов, в которой центробежные силы, приложенные к грузикам, недостаточно высоки, (2 — соединительная вилка; 3 — пружина для компенсации люфта; 4 — регулировочная гайка).

Рис. Кривые характеристик регулятора минимальных и максимальных оборотов RQ: nl — низкие обороты холостого хода; nv0 — максимальные обороты при полной нагрузке; n1 — начало управления (контроля) крутящим моментом; n2 — конец управления крутящим моментом; n10 — повышенные обороты холостого хода (максимальные); 1. Ход управляющей рейки; 2. Регулировка оборотов холостого хода; 3. Регулировка оборотов в режиме полной нагрузки; 4. Неконтролируемая (неуправляемая) область; 5. Ход рейки при запуске (рычаг управления в положении полной нагрузки); 6. Область управления крутящим моментом; 7. Ход при управлении крутящим моментом; 8. Полная нагрузка; 9. Частичная нагрузка; 10. Без нагрузки; 11. Холостой ход; 12. Ход рейки при запуске (рычаг управления в положении холостого хода); 13. Торможение двигателем; 14. Обороты двигателя.

Рис. Схема регулятора минимальных и максимальных оборотов RQ: 1. Стопор для остановки; 2. Рычаг управления; 3. Стопор режима полной нагрузки; 4. Направляющий блок; 5. Шарнирный рычаг; 6. Соединительная вилка; 7. Управляющая рейка; 8. Плунжер ТНВД; 9. Стопор управляющего стержня (подпружинен); 10. Ползун; II. Направляющий стержень; 12. Скользящий болт; 13. Кривошип; 14. Ступица регулятора; 15. Регулировочная гайка; 16. Пружина регулятора; 17. Грузик; 18. Кулачковый вал; 19. Остан овка; 20. Полная нагрузка.

Пружинные блоки (пружины регулятора) в центробежных грузиках обычно включают в себя три расположенных соосновитые пружины: пружину оборотов холостого хода (4) и две пружины максимальных оборотов (3).

1. Остановка; 2. Полная нагрузка; 3. Запуск.

Где и как рождается момент?

Для того чтобы выяснить, откуда формируется такое явление, нужно вспомнить принцип работы ДВС. Не требуется рассматривать весь процесс, рассмотрим цилиндры.

Вначале цикла в полость цилиндра впрыскивается топливо. Затем поршень поднимается вверх, а смесь воздуха и топлива сжимается. После этого в дело вступает свеча зажигания. При помощи искры смесь воспламеняется, а затем расширяется. Поршень при этом опускается вниз и заставляет вращаться коленчатый вал.

Когда водитель жмет на педаль акселератора, то объем впрыскиваемой смеси увеличивается, поршень будет двигаться быстрее. Естественно, что и коленвал станет тоже вращаться на более высоких оборотах. Так появляется крутящий момент двигателя.

Запуск двигателя

Положение педали акселератора для запуска двигателя указано в инструкции к двигателю (или к автомобилю). Количество подаваемого топлива для запуска холодного двигателя при очень низких окружающих температурах получается при педали акселератора, нажатой до пола. Обычно количество топлива, подаваемого с помощью рычага управления в положении низких оборотов холостого хода, будет достаточно для запуска двигателя, когда он прогрет. В таких случаях прижимание педали до пола приведет только к нежелательному дымлению из выхлопной трубы.

1. Остановка; 2. Полная нагрузка; 3. Запуск.

Что зависит от величины крутящего момента?

Максимальная скорость зависит от динамических характеристик. Если двигатель выдает лучшую динамику, то максимальной скорости он сможет достигнуть быстрее. На процесс ускорения влияет в большинстве лишь мощность. Это постоянная сила, она может регулироваться оборотами. Больше обороты – больше мощность. С какой скоростью машина будет набирать обороты, зависит от количества этих самых оборотов.

что такое крутящий момент двигателя

А вот та скорость, с которой агрегат наберет обороты, уже полностью зависит от крутящего момента. А сам крутящий момент двигателя зависит от количества оборотов.

Как считать эту величину?

В этих целях существует формула из курса физики. Это Мкр= F * L, где F – сила, с которой вращается коленчатый вал, а L – длина плеча.

Но выполнить точные расчеты по этой формуле довольно трудно. Сила вращения коленвала – штука непостоянная. Когда поршень направляется вниз, в цилиндре появляется свободное место, и сила, которая действует на поршень, теряет мощность.

Поэтому для того, чтобы рассчитать крутящий момент двигателя, формула дает лишь приблизительные значения. Момент проще определить по количеству оборотов двигателя. Но не думайте, что он будет постоянным вместе с оборотами. Эта сила склонна расти с ростом оборотов, а когда обороты достигнут пикового порога, крутящий момент спадает. Это можно легко заметить, если разогнать автомобиль.

Каждый водитель замечал, что на старте авто идет на разгон медленнее, однако через некоторое время скорость, с которой машина ускоряется, вырастает. Затем через время она снова снижается.

Мощность и момент

Мощность измеряют в лошадиных силах. Однако в большинстве среднестатистических авто вся мощность будет использована лишь на максимуме оборотов. В городе при 2000 об. двигатель сможет задействовать лишь половину «стада». В полную силу агрегат себя покажет лишь при обгоне на высоких оборотах. При этом чем больше растет момент, тем быстрее повышаются обороты. Здесь есть зависимость между моментом и длиной шатуна. Длиннее шатун – сильнее момент.

Когда двигатель отдает максимум мощности на 6000 об., для ускорения требуется поднять обороты с 2000 об. На это требуется определенное время, которые очень важны при выполнении обгона. В случае мотора с высоким крутящим моментом максимум мощности может появиться уже на 2000 об.

К таким моторам можно причислить большинство с невысокими объемами. Также выше, чем у бензинового, крутящий момент дизельного двигателя, причем даже при меньшей мощности и низких оборотах.

крутящий момент двигателей ваз

Именно те, кто владеет подобными авто, пишут на форумах, что сила – далеко не в мощности, а в моменте.

Момент в 200 Нм при низких оборотах будет значительно лучше, чем тот же момент при 4000 об. Лучший вариант – это мотор, в котором на всем диапазоне оборотов значения момента будут практическими пиковыми. Но это стоит очень дорого.

Минимальные обороты шагового двигателя.

Пост # 13 — станок 5822М … пост # 15 схема 5822 — как это? (схемы у них разные в основном по номерам аппратов и точек (проводов)

Описание эл схемы и паспорт 5822 можно ; схемы 5822м –здесь.НО неполностью – нет листа схемы привода изделя и перечня аппаратов. Если еще нужно что из документов, можно спросить здесь . (платные схемы – вроде в сети есть.)

АД (тип не указан) и редуктор (редукция не указана) –понятно…, а вентилятор на АД вместо крыльчатки? .обороты АД с учетом дипазона регулирования могут быть значительно ниже 700 . Мотор может работать продолжительно,, с учетом скорости шлифовки и числа проходов шлифования.

Шкалу указателя оборотов изделия (на 5822 в передней бабке) на пульте управления 22М желательно проверить на соответтсвие оборотам шпинделя изделия.

При отлаженной схеме надо кроме шлифования на проход (в 1 и 2ст) проверить режим затылования (метчики ..) и режим врезного, если эти режимы используются.

Далее только для справки имхо

.. вроде работает – надо знать – каков диапазон оборотов iщпинделя изделия — минимал. и макс.Вроде и резьба получится…Если будет проводится контроль параметров шлифованной резьбы.

Диапазон регулирования оборотов шпинделя изделия — 0,3-43 Об/мин (12-1800 на валу мотора). Редукция от вала мотора (с учетом ременки) =40. Ускоренные – 100 (4000).

Привод изделия родной 5822м имет диапазон ок. 150. АД-ПЧ (редуктор) в бездатчиковом режиме (без энкодера на валу АД)- не более 50. (заявленные в нек титах ПЧи 100-200 не рассматриваю). Те – его как-то расширить можно лишь за счет повышения частоты ПЧ до 100 и более гц. Это регулирование при постоянной мощности и имеет свои пределы для мотора.

Паспортные данные станка 5822М – есть на сайте stanki-katalog и на сайте gig-ant

.Для 5822М : Вес ПСТ-53(м) – 41кг, АИР71в4 — 10кг . АИР7В4 –L30=271. АИР80А4 длина L30=300, вес 12кг

Момент пст53м- 4,1нм (у МИ-32фт 1500, 0,45квт 3нм) Момент АИР71В4 5-5,3Нм АИ80А4 7,8Нм (на фото — привод с синхронным мотором на ПБ)

Вам будет интересно  Система охлаждения двигателя

Двигатель (АД) с векторным ПЧ в бездачиковом («бессенсорном») режиме обеспечивают номинал. момент в низкой части диапазона 1-4гц, но не обеспечивает hавномерного вращения при регулировании , особеннно в зоне низких оборотов,

Тк привод издели не только вращает изделие, но и обеспечивает продольный ход стола Неравномерность хода может сказаться на качестве шлифуемой резьбы, параметрах ее профиля. Неравномерность вращения шпинделя изделия – это неравномерная скорость резания.

Если добавлен редуктор, пусть с редукцией 2 то макс рабочую скорость (43об/мин ) на шпинделе можно получить только в режиме ослабления поля (F >50гц)..

МЗКРС – была одна из причин дроби (на поверхности резьбы) при сдаче станков (22М, 5К22В) – неисправность тахогенератора и отсутвие скрутки проводов тахо и регулятора оборотов). Механика: Балансировка мотора, класс вибрации (S лучше чем R )и его качество его установки тоже влияют.

Изменено 08.09.2018 09:17 пользователем витя

Дизель или бензин?

Зная, что такое крутящий момент двигателя, можно сравнить бензиновые ДВС и дизельные. Так, момент в ДВС на бензине невелик, а достигнуть его можно на 3000 об. Однако такие моторы легко набирают максимальные обороты.

Дизельные моторы не любят высокие обороты, зачастую там максимум – 5000 об. Но момент дизелей значительно выше, и использовать его можно даже на холостом ходу.

Например, можно взять два 2-литровых агрегата. Первый – дизель в 140 лс. и 320 Нм момента и инжекторный мотор в 150 л.с. Номинальный крутящий момент двигателя составит 200 Нм. Даже без проведения испытаний видна разница в моменте при минимальном количестве оборотов.

Если испытать оба агрегата, то дизель уже на 1-4 тыс. об. покажет мощность выше на 40 л.с. Это серьезная разница.

Не нужно доверять высокой мощности. Момент также важен при выборе автомобиля. Высокий крутящий момент – это высокие динамические характеристики. Также высокий момент на низких оборотах экономит топливо.

крутящий момент двигателя формула

К примеру, крутящий момент двигателей ВАЗа достигается уже на средних оборотах, и позволяет этим автомобилям уверенно чувствовать себя в условиях города.

Итак, как мы уже видели, связь между мощностью, крутящим моментом и оборотами двигателя — довольно сложная. Суммируя, можно сказать следующее:

А вцелом все выглядит так:

  • высокий крутящий момент на низких оборотах
    дает автомобилю тягу для передвижения по бездорожью (таким распределением сил могут похвастать дизельные двигатели). При этом мощность может стать уже вторичным параметром — вспомним, хотя бы, трактор Т25 с его 25 л.с.;
  • высокий крутящий момент
    (а лучше — «полка крутящего момента)
    на средних и высоких оборотах
    дает возможность резко ускоряться в городском потоке или на трассе;
  • высокая мощность
    двигателя обеспечивает
    высокую максимальную скорость
    ;
  • низкий крутящий момент
    (даже при высокой мощности)
    не позволит реализовать потенциал двигателя
    : имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.

Характеристика ТРД по числу оборотов представляет собой кривые, которые показывают изменение тяги и удель­ного расхода топлива при изменении числа оборотов (при постоянной скорости и высоте полета).

Характеристика по числу оборотов показана на рис. 41.

При изменении тяги по оборотам отмечаются следующие основные режимы работы двигателя:

1. Малый газ или число оборотов холостого хода. Это наименьшее число оборотов, при котором двигатель рабо­тает устойчиво и надежно. При этом в камерах сгорания происходит устойчивое сгорание, а мощность турбины вполне достаточна для вращения компрессора и агрегатов.

Для ТРД с центробежным компрессором число оборотов холостого хода равно 2400-2600 в минуту. Тяга двигателя на холостом ходу не превышает 75-100 кг.

Начислах оборотов холостого хода удельный расход то­плива не является характерной величиной; здесь обычно приводится часовой расход топлива.

При числах оборотов холостого хода турбина работает в тяжелых температурных условиях, кроме того, подача масла в подшипники очень мала. Поэтому время непрерыв­ной работы на малом газе ограничивается 10 минутами.

2. Крейсерский режим — двигатель работает на числах оборотов, при которых тяга составляет примерно 0,8 Р МАКС.

Рис. 41. Характеристики ТРД по числу оборотов.

При этих числах оборотов гарантируется непрерывная и надежная работа двигателя в течение установленного срока службы (ресурса двигателя).

Конструктор так подбирает параметры двигателя (ε, Т,

КПД), чтобы на крейсерском режиме получить наименьший удельный расход топлива.

Крейсерский режим работы двигателя используется при полетах на продолжительность и дальность.

3. Номинальный режим — двигатель работает на числах оборотов, при которых тяга составляет примерно 0,9 Р МАКС.

Непрерывная работа на этом режиме разрешается не более 1 часа.

На номинальном режиме производятся набор высоты и полеты на повышенных скоростях.

По номинальному режиму производятся тепловой расчет двигателя и расчет деталей на прочность.

4. Максимальный (взлетный) режим — двигатель развивает максимальное число оборотов, при котором получается максимальная тяга Р МАКС — на этом режиме допускается непре­рывная работа не свыше 6-10 минут.

Максимальный режим используется для взлета, набора высоты и кратковременного полета на максимальной скоро­сти (когда необходимо догнать противника и атаковать его).

Характеристика по числу оборотов строится при стан­дартных атмосферных условиях: давлении воздуха Р О = 760 мм

рт. ст. и температуре Т 0 = 15 0 С.

Рис. 42. Изменение удельного расхода топлива по числу оборотов.

С увеличением числа оборотов двигателя (при постоян­ных высоте и скорости полета) увеличивается секундный расход воздуха через двигатель G СЕК и степень сжатия ком­прессора ε КОМП. В результате резко растет тяга двигателя и уменьшается удельный расход топлива, ТРД более эконо­мичен на больших числах оборотов. Если удельный расход топлива на максимальных оборотах принять за 100%, то удельный расход топлива на оборотах холостого хода будет 600-700% (рис. 42). Поэтому надо всемерно сокращать работу ТРД на оборотах холостого хода.

5. Форсаж. Для двигателей, имеющих форсажную ка­меру, в характеристике указывается также тяга, удельный расход топлива и продолжительность работы двигателя при включении форсажа — форсажной камеры.

При запуске ТРД первоначальная раскрутка вала до чисел оборотов холостого хода производится вспомогатель­ном пусковым двигателем.

В качестве пускового двигателя используются: электри­ческие стартеры, стартер-генераторы, турбореактивные стартеры.

Электрический стартер представляет собой электродвигатель постоянного тока, питающийся током от самолетных или аэродромных аккумуляторов во время запуска. Мощность его порядка 15-20 л. с.

На некоторых ТРД устанавливается стартер-генератор, который при запуске работает как электродвигатель, а во время работы двигателя работает как генератор — питает током самолетную сеть.

Электрический стартер, или стартер-генератор, вклю­чается в автоматическую систему запуска, и его работа со­гласована с работой пусковой топливной системы и системы зажигания.

Турбореактивный стартер представляет вспомогательный турбореактивный двигатель, устанавливаемый на мощных ТРД.

Небольшой электродвигатель запускает турбореактивный стартер, который раскручивает до оборотов холостого хода основной двигатель и автоматически выключается.

13 сентября 2017

Режим эксплуатации двигателя – один из главных факторов, влияющих на скорость износа его деталей. Хорошо, когда автомобиль оборудован автоматической коробкой либо вариатором, самостоятельно выбирающим момент перехода на высшую или низшую передачу. На машинах с «механикой» переключением занимается водитель, который «раскручивает» мотор по своему разумению и не всегда правильно. Поэтому автолюбителям без опыта стоит изучить, на каких оборотах лучше ездить, чтобы максимально продлить ресурс силового агрегата.

Как увеличить момент?

Если нужно улучшить динамику автомобиля, можно применить несколько способов. Это увеличение объема, установка наддува, а также изменения газодинамики.

Рабочий объем мотора можно увеличить заменой коленчатого вала с большим эксцентриком либо при помощи расточки цилиндров. Замена коленвала зачастую требует определенных затрат, и нужную модель очень трудно подобрать.

Гораздо выгоднее расточить цилиндры. Стенки вполне допускают такое мероприятие. При этом можно даже обойтись серийными поршнями. Однако не факт, что такая замена обойдется дешевле, нежели замена коленчатого вала.

что такое крутящий момент двигателя автомобиля

Дополнительный наддув можно применить лишь там, где уже стоит турбина. Этот способ требует дополнительных изменений. Изменить наддув можно поднятием планки для стравливания давления. Также вместе с этим придется дополнительно усовершенствовать камеры сгорания, менять систему охлаждения, радиаторы, воздухозаборники.

Можно обойтись и менее радикальным чип-тюнингом. Так, при помощи перепрошивки электронного блока вполне реально легко и просто изменить множество важных параметров и характеристик автомобиля.

Электродвигатели

Мы живем в современном мире и все чаще наблюдаем рождение новых технологий. Так, все, кто интересуется автомобилями, знают компанию Tesla, которая выпускает электрокары. Фото их последней модели представлено ниже.

номинальный крутящий момент двигателя

В качестве мотора там используется асинхронный электрический. А крутящий момент асинхронного двигателя в зависимости от модели составляет от 420 Нм до 600. Это огромные цифры. С такими техническими характеристиками имеющийся мотор может разогнать автомобиль до 100 километров в час за 6,5 секунды при минимальной комплектации.

Душой не стареем

О том, сколько лет существует эта модель, порой не могут ответить даже знатоки марки. Первое поколение Renault Logan начало свою историю еще в далеком 2006 году, когда концерн окончательно решился на создание сверхбюджетного семейного автомобиля, который отличался бы одновременно высокой надежностью, экономичностью и высоким ресурсом.

Надо сказать, что французам это действительно удалось. О том, сколько двигателей поставляется на Рено Логан, и какой потенциал они имеют, поначалу ходило немало слухов. Так, на свет появилась линейка бензиновых двигателей объемом 1.4 и 1.6 литра, которые имеют схожую конструкцию и принцип работы и различаются по мощности именно благодаря своему объему.

Сколько же здесь клапанов? Для первого поколения двигатель, работающий на Рено Логан, насчитывает исключительно 8 клапанов в сумме. Правда, впоследствии появился третий двигатель Рено Логан, в котором количество клапанов увеличилось вдвое и достигло числа 16. Ресурс двигателя, по заверениям инженеров Рено Логан, не регламентирован.

Однако практика показала, что на вопрос, сколько ходит мотор без капремонта, ответ однозначен. Уже после 300 тысяч километров вложений не избежать. Кроме того, уже вскоре после выхода модели на рынок, стало понятно, что одним из слабых мест всех силовых агрегатов стали вкладыши коленчатого вала, которые, как оказалось, стоит менять каждые 50000 километров. В противном случае, двигатель Рено Логан начинает стучать и требует дорогостоящего и трудоемкого ремонта уже после 100 000км.

Двигатель 1.4 имеет мощность 75 лошадиных сил. Крутящий момент может достигаться при рабочих 4750 оборотах в минуту и достигает 105 ньютон-метров. Максимальная скорость составляет 162 км/ч. При этом разогнаться до сотни седан сможет всего за 13 секунд. Расход топлива в городском цикле составляет 9.2 литра, а на трассе эта цифра снижается до 6.8.

Двигатель 1.6 для Рено Логан, показатель мощности которого равен 84 силы, достигает при 5000 оборотах крутящего момента 115 ньютон-метров. Максимально возможная скорость машины 175 км/ч, а разгон до 100км/ч составляет 11.5 секунд. При этом в городе машина способна потребить не более 10 литров, а за городом — 7 литров на 100км пути.

Сколько же сил насчитывает 16-клапанный мотор Рено Логан? Мотор, поставляемый со второй фазой Renault Logan, обладает мощностью 102 «лошадки» и достигает максимального крутящего момента, равного 145 единиц, уже при 3750 оборотах. Максимально возможная скорость составляет 180 км/ч, а разогнаться до сотни машина может всего за 10 секунд. Расход — не больше 7 литров на 100 километров пути.

Подводя итог

Итак, мы знаем, что такое крутящий момент двигателя внутреннего сгорания. Если мощность агрегатов помогает увеличить продажи автомобилей, то момент помогает машине двигаться вперед.

крутящий момент дизельного двигателя

Но мощность и сила момента связаны. Мощность – это объем работы, а момент – это возможность двигателя такую работу выполнить. Это сопротивление, которое нужно преодолеть агрегату.

Вот что такое крутящий момент на самом деле. Это важная характеристика в паре с мощностью.

Номинальная скорость вращения двигателя постоянного тока

Мощность двигателя или крутящий момент? Какая характеристика важнее?

Материал подготовлен автором проекта АвтобурУм. Графики можно увидеть здесь: https://autoburum.com/user/stas90/blog/609-moshhnost-dvigate.
Большинство автолюбителей судят о ходовых характеристиках авто по мощности двигателя. Обычно ее измеряют в киловаттах или лошадиных силах. Чем она больше, тем солиднее. Максимальную мощность двигатель внутреннего сгорания развивает на определенных оборотах. Обычно для бензиновых автомобилей это около 6000 оборотов в минуту, для дизельных – около 4000 об./мин. Именно поэтому дизельные движки относятся к классу низкооборотных, бензиновые – высокооборотные. Однако и среди бензиновых двигателей есть низкооборотные, и наоборот – есть дизельные высокооборотные.

Часто водитель сталкивается с ситуацией, когда необходимо придать авто значительное ускорение для выполнения очередного маневра. Жмешь педалью акселератора в пол, а автомобиль практически не ускоряется. Вот тут-то и нужен мощный крутящий момент на тех оборотах, на которых работает в данный момент двигатель. Именно он характеризует приемистость автомобиля. Поэтому каждый автовладелец должен знать, на каких оборотах его авто имеет максимальный крутящий момент перед тем, как садить красивую девушку в свою машину и показывать чудеса пилотирования.

Вам будет интересно  Какой максимальный вращающий момент и как его можно увеличить?

Крутящий момент двигателя, что это?

Из курса физики за 9 класс многие помнят, что крутящий момент М равен произведению силы F, прикладываемой к рычагу длиной плеча L. Формула:

Длина в системе СИ измеряется в метрах, сила – в ньютонах. Нетрудно определить, что момент измеряется в ньютон на метр.

Основная сила в двигателе внутреннего сгорания вырабатывается в камере сгорания в момент воспламенения смеси. Она приводит в действие кривошипно-шатунный механизм коленвала. Рычагом здесь является длина кривошипа, то есть, если эта длина будет больше, то и крутящий момент тоже увеличивается. Однако, увеличивать кривошипный рычаг бесконечно нельзя. Во-первых, тогда надо увеличивать рабочий ход поршня, то есть размеры движка. Во-вторых, при этом уменьшаются обороты двигателя. Двигатели с большим рычагом кривошипного механизма применяют в крупномерных плавательных средствах. В легковых авто с небольшими размерами коленвала не поэкспериментируешь.

В технических характеристиках, указанных на модель двигателя, параметр максимального крутящего момента указывается совместно с величиной оборотов (либо пределами величин оборотов), при которых такой крутящий момент может быть достигнут. Обычно считается: если максимальный крутящий момент может быть достигнут на оборотах до 4500 об./мин., то двигатель низкооборотный, более 4500 – высокооборотный.

От величины крутящего момента напрямую зависит характеристика мощности двигателя автомобиля. Почему считается, что бензиновые движки заведомо могут обеспечить большую, чем дизельные, мощность. Дело в том, что в силу конструктивных особенностей и управляемости системы зажигания бензиновые двигатели могут длительное время работать на оборотах 8000 об./мин и более. Дизельные движки достигают максимального крутящего момента на более низких оборотах. В городском ритме движения, когда нет необходимости развивать предельные обороты, дизельные авто нисколько не уступают бензиновым, наоборот, на малых и средних оборотах спокойно можно двигаться в ритме от 30 до 60 км/час, не переключая третью либо 4-ю передачу.

Пересчитать крутящий момент в мощность двигателя и наоборот можно, руководствуясь упрощенной физической формулой:

По этой формуле получится мощность Р в киловаттах. Вводить надо М – крутящий момент двигателя в ньютон на метр, n– величина оборотов двигателя. Здесь 9549 — число, которое получается после упрощения основной формулы в результате перемножения констант (ускорения свободного падения, числа Пи и т.п.).

Для перевода киловатт в лошадиные силы следует результат умножить на 1,36. В некоторых случаях в технических характеристиках указывается крутящий момент на холостых оборотах.

Зависимости мощности двигателя и крутящего момента от количества оборотов

Типовые характеристики зависимости мощности и крутящего момента от оборотов двигателя приведены на рис.1

Из графика видно, что крутящий момент стабильно увеличивается до 3000 оборотов, затем наступает относительно пологий участок. На оборотах около 4500 об/мин достигается максимум крутящего момента около 178 ньютон*метр. В то же время мощность двигателя продолжает расти до достижения оборотов около 5500 об/мин, и на этих оборотах достигает около 124 лошадиных сил. Это понятно, если обратиться к формуле, в которой видно, что мощность пропорциональна произведению крутящего момента на величину оборотов. После 5500 оборотов в минуту уменьшение крутящего момента превышает крутизну увеличения оборотов, и мощность начинает уменьшаться.

Как это объяснить физически, то есть, без формул. На малых оборотах в область сгорания поступает небольшое количество воздушно-топливной смеси в единицу времени, соответственно, крутящий момент и мощность небольшие. Увеличивая обороты, количество смеси (а вслед за ним и мощность, крутящий момент) возрастает. Достигая больших значений, мощность уменьшается по следующим причинам:

механические потери на трение механизмов;

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

где:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение (с).

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Формула угловой скорости

Формула угловой скорости

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

где:

  • π – число, равное 3,14;
  • ν – частота вращения, (об./мин.).

В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:

ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.

К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.

Шестерёнчатый уменьшитель хода для мотокультиватора

Шестерёнчатый уменьшитель хода для мотокультиватора

Как определить угловую скорость

Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:

Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.

Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.

Правило Максвелла для угловой скорости

Правило Максвелла для угловой скорости

Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:

ω = ϕ / t = 6 * t / t = 6 с-1

Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.

Обороты двигателя: характеристики и особенности

Начинающие и профессиональные автовладельцы интересуются вопросом, на каких оборотах (высоких или низких) лучше ездить. Этот актуальный вопрос чаще всего провоцирует вызов ожесточенной полемики среди автолюбителей, которые предпочитают высказать свою точку зрения.

Данная статья позволит ознакомиться с основными оборотами двигателей и в устранении проблем, возникших в ходе нестабильности оборота. Поэтому предлагаем внимательно прислушаться к советам профессионалов, которые подскажут, какие обороты двигателя допустимы для вождения современного автомобиля.

Самой распространенной проблемой современных агрегатов считается нестабильночть оборотов холостого хода. Следовательно, отсутствие холостых ходов, может, вызывать серьезные хлопоты на дорогах. Управлять подобным авто становится практически невозможным. Чтобы избежать аварийных ситуаций, автовладелец обязан мочь учесть несколько важных правил.

В процессе движения автомобиль, всегда определяется частота вращения вала колес и двигателя. Когда увеличивается частота вращения вала двигателя, соответственно, увеличивается и скорость движения авто. Поэтому частота движения вала определяется делением передаточного числа текущей передачи.

Также, не стоит забывать, что на некоторых автомобилях установлен ограничитель оборотов двигателя, который снижает количество оборотов коленвала в зависимости от разных условий.

При запуске системы холостого хода происходит мощностный режим. В подобном случае необходимо огромное внимание уделяется инжекторному и карбюраторному мотору. Автомобильный карбюратор более раннего выпуска обладает зависимым холостым ходом. Благодаря новейшей разработанной конструкции, во время вождения авто, у водителей не должно возникать лишних хлопот.

Но так как стоимость на нефть увеличилась, мировые производители транспортных средств, выпустили автономный экономичный холостой ход, который уменьшает расходы топлива. В основном число оборотов не должно превышать 60.

По мнению специалистов, после внедрения карбюратора автономного холостого хода, обслуживание данного устройства заметно усложнилось. Так как система питания нуждается в вождении фильтров, которые предназначены для очищения горючего. Стоит отметить, что отсутствие фильтров положительно сказывается на стабильности функционировании двигателя. Поэтому обороты (по асфальту) нужно держать между 2000 до 3000.

Ранее, на карбюраторах устанавливали холостой ход с помощью специального винта, приоткрытый дроссельной заслонкой. Но на данном этапе, процесс установки значительно усложнился. Отдельная система с наличием собственных каналов и жиклеров, отвечают за процесс подачи воздуха и дозировки горючего. После установления системы холодного хода, намного снизилась надежность.

При попадании хотя бы одного волоса или соринки, могут возникнуть перебои. Работоспособность двигателя ухудшиться и возникнут серьезные проблемы. Если вовремя не обратить внимания, то можно полностью заглушить работу двигателя. Новейшие карбюраторы, которые имеют электроклапан холодного хода, отличаются:

  • экономичностью;
  • прочностью;
  • надежностью;
  • стабильностью

Как определить скорость вращения электродвигателя Как определить скорость вращения электродвигателя Как определить скорость вращения электродвигателя Как определить скорость вращения электродвигателя Как определить скорость вращения электродвигателя Как определить скорость вращения электродвигателя Как определить скорость вращения электродвигателя

Асинхронный двигатель

Асинхронный двигатель – электрическая машина, работающая в двигательном режиме, у которой частота вращения ротора не равна частоте вращения магнитного поля статора и зависит также от нагрузки. Основа работы электродвигателя – преобразование электрической энергии в механическую. Трехфазный асинхронный электродвигатель был разработан и впервые создан в 1889 году русским ученым-электротехником М.О. Доливо-Добровольским. Совместно с разработкой двигателя Михаил Осипович разработал и осуществил впервые в мире в 1891 году систему передачи трехфазного тока на расстояние.

Инжекторные двигатели с плавающими оборотами

Следует отметить, что дроссельный узел часто загрязняется. После чего в дальнейшем происходит нестабильное функционирование оборотов холостого хода. Канал полностью забивается грязью и происходит перекрытие байпасного канала. По мнению профессионалов, дроссельные узлы можно с легкостью разобрать и очистить, то это не представляет особой опасности для устройства.

Если происходит посторонний подсос воздуха, то в датчике отображаются неправильные данные. То есть это, может, привести к убытию или добавлению горючего. Что приводит в заблуждение водителя. Поэтому для выровнения соотношения смеси, проводится полноценная очистка. Таким образом, можно урегулировать соотношение оборотов. Прежде чем осуществляется процесс нормализации подачи воздуха, специалисты осматривают устройство.

Что такое шпиндель

Винчестер представляет собой набор из одной или нескольких герметизированных пластин в форме дисков, покрытых слоем ферромагнитного материала и считывающих головок в одном корпусе. Пластины приводятся в движение при помощи шпинделя (вращающегося вала). Пластины жесткого диска закреплены на шпинделе на строго определенном расстоянии. При вращении пластин расстояние должно быть таким, чтобы считывающие головки могли читать и записывать на диск, но при этом не касались поверхности пластин.

Двигатель шпинделя должен обеспечивать стабильное вращение магнитных пластин на протяжении тысяч часов, чтобы диск нормально функционировал. Неудивительно, что иногда проблемы с диском связаны с заклиниванием шпинделя, и вовсе не являются ошибками в файловой системе.

Двигатель отвечает за вращение пластин, и это позволяет работать жесткому диску. Благодаря отсутствию контакта, жесткий диск можно перезаписать в среднем 100 тысяч раз. Также на продолжительность работы диска влияет герметический корпус (гермозона), благодаря которому внутри корпуса HDD создается пространство, очищенное от пыли и влаги.

Вот как выглядят шпиндели, у каждого производителя они немного внешне могут отличаться. Это вот шпиндели от винтов Samsung.

Как определить скорость вращения электродвигателя

или вот еще подборочка.

Как определить скорость вращения электродвигателя

spindle speed или по русски скорость вращения шпинделя, определяет насколько быстро вращаются пластины в нормальном режиме работы жесткого диска. Она измеряется в RpM, то есть оборотах в минуту. От RpM скорости, будет зависеть на сколько быстро будет работать ваш компьютер, а именно как быстро компьютер может получить данные от жесткого диска.

Сколько раз я видел тормозные ноутбуки, в которых было по 4 ГБ оперативной памяти, там стоял процессор Intel core i3 или даже i5, но стоял блин hdd со скоростью вращения 5400 оборотов в минуту, и это был полный трешь, такие винты нужно сразу вытаскивать и ставить ssd иначе работать было не возможно

Время, которое требуется для блока магнитных головок, чтобы перейти к запрошенной дорожке/цилиндру называется время поиска (seek latency или задержкой). После того как считывающие головки переместятся в нужную дорожку/цилиндр, мы должны дождаться поворота пластин, чтобы нужный сектор оказался под головкой — это задержки на вращение (rotational latency time). И это является прямой функцией скорости шпинделя. То есть, чем быстрее скорость шпинделя, тем меньше задержки на вращение.

Как запустить мотор с использованием эфира

Ограничитель агрегата ограничивает максимальные обороты копенчатого вала двигателя. Поэтому чтобы запустить двигательно и привести в нормально состояние, необходимо воспользоваться диэтиловым эфиром.

Вам будет интересно  Обкатка нового автомобиля: сколько км и как правильно обкатывать новый авто – Taxi Bolt || Обкатка автомобиля с акпп солярис

Высокая летучесть концентрата и температура воспламенения отлично реагируют на процесс и помогают в запуске двигателя. Если вы не умеете пользоваться коварным веществом, тогда лучше доверить дело профессионалам, чтобы избежать серьезных последствий.

Скорость сгорания эфира достаточно велика. Поэтому при неправильном применении соотношения, можно вызвать взрывной эффект. Чтобы предотвратить подобные последствия, специалисты пользуются дополнительными компонентам, которые отлично взаимодействуют с эфиром. Если процесс проводится в зимний период, тогда следует подумать об эксплуатации двигателя.

Многие специалисты рекомендуют использовать бензиновый, качественный движок. Чтобы не перезагружать свой бюджет лишними затратами, желательно хорошо подумать обо всех деталях и только после этого подобрать соответствуюбщий автомобиль. Рекомендуемый предмет, позволит передвигаться без лишних затрат.

Основные показатели двигателя

Сгорание топлива происходит внутри ДВС, в специальной камере цилиндра. Это приводит в движение поршень, который, совершая циклические возвратно-поступательные движения, проворачивает коленчатый вал. Таков упрощенный принцип работы любого поршневого двигателя внутреннего сгорания.

Основные характеристики ДВС можно оценить тремя основными показателями:

  • мощность двигателя;
  • крутящий момент;
  • расход топлива.

Основные показатели ДВС
Рассмотрим более подробно каждый из этих показателей.

Способы управления скоростью АД с фазным ротором

Изменение скорости вращения АД с фазным ротором производится путем изменения скольжения. Рассмотрим основные варианты и способы.

Изменение питающего напряжения

Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.

Как определить скорость вращения электродвигателя

Но такой режим уменьшает перегрузочную способность двигателя. Этот способ применяется для регулирования в пределах напряжения не выше номинального, так как увеличение номинального напряжения приведет к выходу электродвигателя из строя.

Активное сопротивление в цепи ротора

При использовании данного метода в цепь ротора подключается реостат или набор постоянных резисторов большой мощности. Данное устройство предназначено для плавного увеличения сопротивления.

Как определить скорость вращения электродвигателя

Скольжение растет пропорционально увеличению сопротивления, а скорость вращения вала электромотора при этом снижается.

Как определить скорость вращения электродвигателя

большой диапазон регулирования в сторону понижения скорости вращения.

  • снижение КПД;
  • увеличение потерь;
  • ухудшение механических характеристик.

Асинхронный вентильный каскад и машины двойного питания

Изменение скорости работы асинхронных электромоторов в данных случаях выполняется путем изменения скольжения. При этом скорость вращения электромагнитного поля неизменна. Напряжение подается напрямую на обмотки статора. Регулировка происходит за счет использования мощности скольжения, которая трансформируется в цепь ротора, и образует добавочную ЭДС. Такие методы используются только в специальных машинах и крупных промышленных устройствах.

Как определить скорость вращения электродвигателя

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Что значит номинальная частота вращения двигателя

3.9 номинальная частота вращения n

ном
, об · мин -1 :
Заданное значение частоты вращения, определяющее номинальный режим работы насоса.

3.8, 3.9 (Измененная редакция, title=»Изменение № 1 (ИУС 05-2014)»).

3.11 номинальная частота вращения n

ном, об × мин -1
: Установленное значение частоты вращения рабочего колеса (приводного вала насоса), определяющее номинальный режим работы насоса.
3.1.5.2 номинальная частота вращения асинхронного генератора

(rated speed of asynchronous generator rotation): Частота вращения
nr,
G, определяемая по формуле

r,G — расчетное значение скольжения асинхронного генератора (rated slip of asynchronous generator).

3.2. В настоящем стандарте применены следующие термины с соответствующими определениями для характеристик напряжения:

39. номинальная частота вращения вала:

Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели.

3.13 номинальная частота вращения вала насоса; n

ном:
Частота вращения вала насоса, соответствующая номинальному режиму работы насоса.
3.1.5 номинальная частота вращения генератора

(rated speed of generator rotation);
n
r, G:
Частота вращения, необходимая для генерирования напряжения номинальной частоты.
3.5. Номинальная частота вращения двигателя

— частота вращения коленчатого вала (об/мин), при которой согласно документации изготовителя двигатель должен развивать номинальную мощность.

3.4 номинальная частота вращения двигателя S

(rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем.

номинальная частота вращения коленчатого вала:

Расчетное значение частоты вращения коленчатого вала.

Номинальная частота вращения коленчатого вала (ротора) двигателя

3.11 номинальная частота вращения коленчатого вала двигателя:

Номинальная частота вращения пном

. — частота вращения рабочего колеса первой ступени насоса при номинальных значениях подачи насоса Qном., напора Нном. и геометрической высоты всасывания hг.ном..

3.1.5.1 номинальная частота вращения синхронного генератора

(rated speed of synchronous generator rotation): Частота вращения
n
r, G, определяемая по формуле

r — номинальная частота, Гц;

— число пар полюсов.

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Смотреть что такое «номинальная частота вращения» в других словарях:

номинальная частота вращения — nr Частота вращения при номинальной мощности, соответствующая номинальному значению частоты вращения электроагрегата. [ГОСТ Р ИСО 8528 2 2007] Тематики электроагрегаты генераторные EN declared speed … Справочник технического переводчика

номинальная частота вращения коленчатого вала — номинальная частота вращения коленчатого вала: Расчетное значение частоты вращения коленчатого вала. Источник: ГОСТ 30419 96: Устройства воздухообеспечения тормозного оборудования. Компрессоры. Общие требования безопасности … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения вала — Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. [ГОСТ Р 51852 2001] Тематики установки газотурбинные EN rated speed … Справочник технического переводчика

номинальная частота вращения рентгеновской трубки — Частота вращения анода, при достижении которой рентгеновская трубка работает с номинальной мощностью. [ГОСТ 20337 74] Тематики рентгеновские приборы DE Nenndrehfrequenz der Anode der Röntgenröhre … Справочник технического переводчика

Номинальная частота вращения пном — частота вращения рабочего колеса первой ступени насоса при номинальных значениях подачи насоса Qном., напора Нном. и геометрической высоты всасывания hг.ном.. Источник: НПБ 313 2002: Техника пожарная. Мотопомпы пожарные. Общие технические требов … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения агрегата — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN nominal set speed … Справочник технического переводчика

номинальная частота вращения двигателя в минуту — — [https://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN rated engine speed … Справочник технического переводчика

Номинальная частота вращения коленчатого вала (ротора) двигателя — По ГОСТ 14846 Источник: ГОСТ 20306 90: Автотранспортные средства. Топливная экономичность. Методы испытаний … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения вала — 39. номинальная частота вращения вала: Частота вращения выходного вала газотурбинного двигателя, при которой определены его расчетные показатели. Источник: ГОСТ Р 51852 2001: Установки газотурбинные. Термины и определения оригинал документа См … Словарь-справочник терминов нормативно-технической документации

Номинальная частота вращения двигателя — 3.5. Номинальная частота вращения двигателя частота вращения коленчатого вала (об/мин), при которой согласно документации изготовителя двигатель должен развивать номинальную мощность. Источник: ГОСТ 27247 87: Машины землеройные. Метод определения … Словарь-справочник терминов нормативно-технической документации

Что такое крутящий момент

Крутящий момент двигателя рассчитывается по формуле: M = F*R, где F – это сила, с которой давит поршень, R — длина плеча (рычага). В нашем случае плечом будет расстояние от оси вращения коленчатого вала до места крепления шатунной шейки. Этот параметр измеряется в ньютонах на метр (Hм). 1H соответствует 0,1 кг, который давит на конец рычага длиной в метр.

Крутящий момент ДВС характеризует показатель силы вращения коленчатого вала и определяет динамику разгона автомобиля.

Как определить мощность асинхронного электродвигателя.

Электродвигатель – обмотка статора

Время от времени в процессе работы, нужно найти количество оборотов асинхронного электродвигателя, на котором отсутствует бирка. И далековато не каждый электрик с этой задачей может совладать. Но мое мировоззрение, что каждый электрослесарь в этом должен разбираться. На собственном рабочем месте, как говорится – по долгу службы, вы понимаете все свойства собственных движков. А перебежали на новое рабочее место, а там ни на одном движке нет бирок. Найти количество оборотов электродвигателя, даже очень просто и просто. Определяем по обмоттке. Для этого нужно снять крышку мотора. Лучше это проделывать с задней крышкой, т. к. шкив либо полумуфту снимать не нужно. Довольно снять кожух

остывания и крыльчатку и крышка мотора доступна. После снятия крышки обмотку видно довольно отлично. Найдите одну секцию и смотрите сколько

Как определить скорость вращения электродвигателя

Движок – 3000 об/мин

места она занимает по окружности круга (статора). А сейчас запоминайте, если катушка занимает половину круга (180 град.) – это движок на 3000 об/мин.

Движок – 1500 об/мин

Если в окружности вместится три секции (120 град.) – это движок 1500 об/мин. Ну и если в статоре вмещается четыре секции (90 град.) – этот движок на 1000 об/мин. Вот так совершенно просто можно найти количество оборотов “неизвесного” электродвигателя. На представленных рисунках это видно отлично.

Движок – 1000 об/мин

Это способ определения, когда катушки обмоток намотаны секциями. А бывают обмотки “всыпные”, таким способом уже не найти. Таковой способ намотки встречается изредка.

Еще есть один способ определения количество оборотов. В роторе электродвигателя, есть остаточное магнитное поле, которое может наводить небольшую ЭДС в обмотке статора, если мы будем крутить ротор. Эту ЭДС можно “изловить” – миллиамперметром. Наша задачка заключается в следующем: необходимо отыскать обмотку одной фазы, независимо как соединены обмотки, треугольником либо звездой. И к кончикам обмотки подключаем миллиамперметр, вращая вал мотора, смотрим сколько раз отклонится стрелка миллиамперметра за один оборот ротора и вот по этой таблице поглядеть, что за движок вы определяете.

(2p) 2 3000 r/min (2p) 4 1500 r/min (2p) 6 1000 r/min (2p) 8 750 r/min

Вот такие обыкновенные и думаю понятные два способа определения колличества оборотов на котором отсутствует бирка (табличка).

В СССР выпускался прибор ТЧ10-Р, может у кого и сохранился. Кто не лицезрел и не знал о таком измерителе, предлагаю поглядеть фото собственного. В комплекте имеется две насадки, – для измерения оборотов по оси вала и 2-ая для измерения по окружности вала.

Как определить скорость вращения электродвигателя

Измерить колличество оборотов можно и при помощи “Цифрового лазерного тахометра”

Как определить скорость вращения электродвигателя

“Цифровой лазерный тахометр”

Спектр: 2,5 об / мин

99999 об / ми Разрешение / шаг: 0,1 об / мин для спектра 2,5

999,9 об / мин, 1 об / мин 1000 об / мин и поболее Точность: + / – 0,05% Рабочее расстояние: 50mm

500mm Также указывается малое и наибольшее значение Для тех кому реально необходимо – просто супер вещь! Л. Рыженков

Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.


Внешняя скоростная характеристика

На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

Определяем обороты

Существует несколько способов измерения оборотов электродвигателя. Самый надежный заключается в использовании тахометра – устройства, предназначенного именно для этих целей. Однако такой прибор есть не у каждого человека, тем более, если он не занимается электрическими моторами профессионально. Поэтому существует несколько иных вариантов, позволяющих справиться с задачей «на глаз».

Как определить скорость вращения электродвигателя

Первый подразумевает снятие одной из крышек двигателя с целью обнаружения катушки обмотки. Последних может быть несколько. Выбирается та, которая более доступна и расположена в зоне видимости. Главное, во время работы не допустить нарушения целостности устройства.

Как определить скорость вращения электродвигателя

Когда катушка открылась взору, необходимо ее внимательно осмотреть и постараться сравнить размер с кольцом статора. Последний является неподвижным элементом электродвигателя, а ротор, находясь внутри него, осуществляет вращение.

Как определить скорость вращения электродвигателя

Второй способ связан с обмотками внутри статора. Считается количество пазов, которые занимает одна секция какой-либо катушки. Пазы расположены на сердечнике, их число свидетельствует о количестве пар полюсов. 3000 оборотов в минуту будет при наличии двух пар полюсов, при четырех – 1500 оборотов, при шести – 1000.

Как определить скорость вращения электродвигателя

Ответом на вопрос о том, от чего зависит количество оборотов электродвигателя, будет утверждение: от числа пар полюсов, причем это обратно пропорциональная зависимость.

Как определить скорость вращения электродвигателя

На корпусе любого заводского двигателя имеется металлическая бирка, на которой указаны все характеристики. На практике такая бирка может отсутствовать или стереться, что немного усложняет задачу определения числа оборотов.

Как определить скорость вращения электродвигателя

Роль мощности и крутящего момента двигателя

Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.

Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:

Источник https://zer-good74.ru/marki-i-vidy/chto-takoe-oboroty-dvigatelya.html

Источник https://srtmx.ru/elektro-teoriya/nominalnaya-chastota.html

Источник

Источник

Author: mag

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *