ДВС, что это такое в машине? Устройство двигателя внутреннего сгорания, его виды и принцип работы

Содержание

ДВС, что это такое в машине? Устройство двигателя внутреннего сгорания, его виды и принцип работы

За время своего существования инженерная мысль человечества изобрела различные типы двигателей, многие из которых применяются до сих пор, но некоторые из них стали лишь историческим фактом.

На данный момент все типы двигателей разделяются на следующие типы:

  • Электрические;
  • Гидравлические;
  • Тепловые.

Их название в первую очередь зависит от того, какой тип энергии они преобразуют в работу. К примеру, работа теплового двигателя основана на превращении энергии нагрева в механическое движение. Они в свою очередь бывают также двух типов:

  • С внешним сгоранием топлива. К ним относятся паровые моторы, а также двигатель Стирлинга.
  • С внутренним сгоранием. Их устанавливают в технику, начиная от транспортной авиации, морских перевозок и заканчивая автомобильным транспортом.

Именно двигателями внутреннего сгорания оборудовано большинство транспортных средств, используемых во всем мире. В этой статье мы расскажем о видах ДВС, а также об устройстве и работе ДВС поршневого типа.

Что такое ДВС в автомобиле, расшифровка кратко

По дорогам мира перемещаются миллионы автомобилей, автобусов и грузовиков. Такое развитие транспорта было бы невозможным без ДВС – главной движущей силы всех современных машин. Расшифровка аббревиатуры ДВС несложная – двигатель внутреннего сгорания.
Что такое ДВС в автомобиле, что в нем горит и почему внутри – поясняем кратко. Паровой котел – это двигатель внешнего сгорания: дрова, уголь или мазут горят, подогревая воду, которая превращается в пар, который толкает поршни. Получается длинный и неэффективный цикл. Принципиальное отличие ДВС в том, что топливо сгорает внутри цилиндров, передавая энергию непосредственно поршням и валу, эффективность преобразования существенно выше. Кроме этого ДВС занимают немного места, мало весят, экономичны, работают на разнообразных видах топлива.

Краткое содержание статьи

2. Как устроен ДВС автомобиля;

3. Как работает ДВС, описание, анимация;

4. Ремонт ДВС, стоимость.

Виды ДВС

В зависимости от типа рабочего механизма все разнообразие ДВС можно разделить на несколько категорий, встречаются:

  • Газотурбинные;
  • Роторные;
  • Поршневые.

Именно за счет этих механизмов в камере сгорания может осуществляться процесс превращения тепловой энергии в движущую силу, собственно за счет поршня, ротора или турбины. Давайте рассмотрим принцип работы каждого типа ДВС более подробно.

Газотурбинный двигатель

Работа газотурбинного двигателя основана на том, что топливо, воспламеняясь, толкает лопасти турбины. Другими словами происходит вращение лопастей за счет расширяющегося газа. И чем выше температура горения топлива, тем больше КПД у данного двигателя.

В свою очередь различают одновальные и двухвальные газотурбинные двигатели. Одновальные моторы имеют одну турбину, двухвальные – две. Помимо этого двухвальные агрегаты выдерживают большую нагрузку, чем одновальные. Такие двигатели чаще всего можно встретить в грузовых автомобилях, на кораблях, локомотивах, самолетах.

Роторный ДВС

Принцип работы роторного двигателя основан на постоянном вращении ротора с переменной тактов работы. Роторный двигатель имеет всего лишь один поршень, который одновременно и является ротором. Он вращается в цилиндре специальной формы, приспособленной для него.

Ротор в свою очередь соединен с валом и зубчатой передачей со стартером. Его лопасти при вращении ротора попеременно перекрывают камеру, где и сгорает топливо. Такой мотор имеет сбалансированную конструкцию, небольшой вес и компактный размер. Однако топлива подобный агрегат потребляет на 100 километров пути гораздо больше, чем поршневой двигатель.

Роторный двигатель в разное время ставился на некоторые модели «Мерседес», «Шевроле» и «Ситроен». Также в прошлом двигатель такой конструкции устанавливали и на моделях «ВАЗ-2108″ и » ВАЗ-2109″. В настоящее время роторный мотор можно увидеть на модели RX8 концерна «Мазда». Однако с 2012 года ее производство прекращено. На данный момент концерн готовит к выпуску новую модель спорткара «Мазда RX-9».

Поршневой двигатель

В ДВС с поршневым принципом работы камера сгорания находится внутри цилиндра, где сам поршень выполняет функцию подвижной части, которая в зависимости от этапа сгорания топлива и такта работы мотора поднимается или опускается. В свою очередь в двигателе автомобиля может находиться определенное число цилиндров. Их поршни через передаточный механизм приводят в движение коленвал, который и преобразует возвратно-поступательное движение поршня во вращательное, что в конечном итоге и позволяет колесам автомобиля вращаться.

ДВС, что это такое в машине можно понять, рассмотрев его на данной картинке

Поршневой двигатель самый распространенный в автостроении из-за своих положительных характеристик:

  • Высокой мощности и надежности, в сравнении с другими типами ДВС;
  • Лучшей экономичности;
  • А также благодаря своим достаточ-но компактным размерам.

Классификация ДВС поршневого типа

Данные типы двигателей можно классифицировать по используемому горючему, встречаются:

  • Бензиновые;
  • Дизельные;
  • Газовые ДВС.

Также двигатели поршневого типа можно классифицировать по системе зажигания, они разделяются:

  1. На ДВС с принудительным воспламенением топлива;
  2. На двигатели, в которых топливо самовоспламеняется от сжатия.

В двигателях первого типа с принудительным возгоранием поджиг горючей смеси происходит за счет электрической искры, которая вырабатывается системой зажигания и подается через свечу прямо в цилиндры. В качестве топлива в них чаще всего используется бензин, реже можно встретить модели, работающие на газе.

Помимо этого бензиновые двигатели могут также различаться и способом подачи горючей смеси в рабочую камеру сгорания. Делятся они на карбюраторные и инжекторные системы.

Дизельные же двигатели относятся к моторам, где возгорание топлива осуществляется самопроизвольно, от сжатия его поршнем. В ДВС этого типа используется преимущественно наиболее экологическое дизельное топливо, но при необходимости двигатель может работать и на других горючих жидкостях, начиная от керосина и мазута, и заканчивая рапсовым и пальмовым маслом.

В свою очередь двигатели внутреннего сгорания также различаются количеством тактов в рабочем цикле. Встречаются четырехтактные и двухтактные моторы. Каждый из них имеет свои как положительные стороны, так и отрицательные. Однако четырехтактные ДВС самые распространенные из всех поршневых. Двухтактные же моторы в современных автомобилях не используются.

Поршневые типы двигателей по расположению цилиндров в моторе также разделяются на несколько подвидов, самыми распространенными из них являются:

  • Рядные двигатели. В ДВС данной конструкции цилиндры выстроены в один ряд, и поршни вращают общий коленвал. Такие двигатели также обозначаются индексом «Rx», где X – число цилиндров.
  • V-образные моторы. Этот тип двигателя отличается от предыдущего тем, что цилиндры в нем расположены напротив друг друга в виде буквы «V», при этом могут образовывать угол от 10 до 120 градусов. Такая конструкция в свою очередь позволяет значительно уменьшить длину двигателя.
  • Vr-образная конструкция представляет собой нечто среднее между рядным и V-образным двигателем. При этом угол между цилиндрами в нем максимально мал, всего 15 градусов.
  • Оппозитные ДВС. Отличительной особенностью этих двигателей является угол между цилиндрами, который составляет целых 180 градусов.

Двигатель внутреннего сгорания: устройство и принцип работы

Необходимо помнить, что ДВС в машине состоит из множества составляющих элементов и вспомогательных систем, являющихся составной частью двигателя. Для упрощения их можно сгруппировать в следующе группы:

  • Кривошипно-шатунный механизм;
  • Газораспределительный механизм;
  • Система смазки и охлаждения;
  • Топливная и выхлопная система;
  • Система зажигания.

Давайте разберем каждую часть более подробно.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм – это одно из важнейших устройств в поршневом двигателе. Именно этот механизм выполняет две важные функции в машине – вырабатывание тепла и преобразование этой энергии в механическую работу. Состоит данный механизм из следующих деталей:

  • Блок цилиндров;
  • Головка блока цилиндров (ГБЦ);
  • Системы передачи движений от поршней на коленчатый вал;
  • Коленвал с маховиком.

Блок цилиндров является основой, на которой размещается множество навесных частей мотора, таких как ГБЦ и картер. Помимо этого также выполняет функцию каркаса для размещения в нем цилиндров.

Газораспределительный механизм

В свою очередь головка блока цилиндров является основой для такого важного составляющего мотора как механизм газораспределения, который расположен в полости головки, называемой картер. Именно за счет данного механизма в цилиндры ДВС своевременно поступает необходимое количество топливной смеси, а также выводятся продукты сгорания из цилиндров. Осуществляется этот процесс за счет клапанов, которые открываются и закрываются в определенный промежуток времени на разных этапах работы двигателя.

На картинке – устройство кривошипно-шатунного и газораспределительного механизма ДВС

Механизм газораспределения состоит также из множества составляющих, к ним относятся такие элементы как:

  • Распределительный вал. В зависимости от конкретного двигателя распредвал может быть один или их может быть два на каждый ряд цилиндров.
  • Клапана, которые делятся на впускные и выпускные.
  • Различные детали привода клапанов и элементов газораспределительного механизма.

Механизм газораспределения приводится в действие от коленвала, связан с распредвалом посредством ремня или цепи, который при вращении с помощью передаточных систем и нажимает на клапана, тем самым заставляя их в нужный момент открываться и закрываться. Все это крепится на специальной площадке головки блока цилиндров. ГБЦ же присоединяется к блоку цилиндров с помощью особых винтов и специальной соединительной прокладки.

Система питания ДВС

Работа системы питания заключается в создании горючей смеси путем смешивания воздуха с топливом в определенных пропорциях, оптимальных для работы двигателя.

  1. В карбюраторных моторах процесс смешивания протекает в самом карбюраторе за счет разницы давления, возникающего при работе поршня в цилиндре. Затем данная смесь попадает в рабочие камеры цилиндров через впускной коллектор и клапаны.
  2. В инжекторных ДВС процесс приготовления топливной смеси происходит во впускном коллекторе (встречаются и исключения). В двигателях этой конструкции топливо под высоким давлением впрыскивается в коллектор через такие элементы как форсунки, после чего и происходит смешивание бензина с воздухом.

В отличие от карбюраторного двигателя, насос которого является механическим, в инжекторной системе установлен электрический. Он позволяется обеспечить нужное давление в системе при подаче бензина. Весь этот процесс контролируется электронной системой автомобиля. Путем сбора информации с множества датчиков компьютер решает, в какой момент следует произвести подачу бензина. Одновременно с этим открывается нужный клапан, и готовая топливная смесь подается в цилиндр.

Система зажигания

Система зажигания предусмотрена в конструкциях только бензиновых ДВС. Работа данной системы заключается в поджиге топливной смеси в камере сгорания. Происходит это действие в определенный промежуток времени с помощью свечи зажигания. Между электродами свечи проскакивает электрическая искра, которая и воспламеняет горючую смесь в нужный момент.

Вам будет интересно  Сухой картер: принцип работы, устройство, преимущества и недостатки

В дизельных же двигателях системы зажигания попросту нет, поскольку топливо в ДВС этой конструкции самовоспламеняется за счет сжатия. Вместо свечи в них установлена форсунка высокого давления, которая впрыскивает дизельное топливо под высоким давлением прямо в цилиндр. Причем это происходит в тот момент, когда воздух в цилиндре уже сжат и разогрет порядка до 700 градусов. Именно при этой температуре дизтопливо способно самовоспламеняться, что и происходит практически сразу после его впрыска в цилиндр.

Выхлопная система

Выхлопная система служит для отвода отработанных газов из камеры сгорания наружу. В первую очередь отработавшие газы попадают из головки блока цилиндров в выпускной коллектор. Он собирает газы из каждого цилиндра индивидуально и направляет их в одну трубу.

На картинке – устройство выхлопной системы автомобиля

Далее отработавшие газы проходят через каталитический нейтрализатор, где вредные газы превращаются в менее опасные. Хотя его может и не быть, если автомобиль достаточно старый. Тогда газы поступают сразу в глушитель, который уменьшает шум выхлопа, после чего они просто выходят через выхлопную трубу.

Стоит отметить, что выхлопная труба обычно располагается в задней части автомобиля, поскольку именно оттуда выхлопные газы имеют меньше всего шансов попасть в салон.

Система смазки ДВС

Итак, мы с вами познакомились с двумя механизмами, которые применяются в автомобильном двигателе, это кривошипно-шатунный и механизм газораспределения. Стоит обратить внимание на то, что детали этих механизмов соприкасаются друг с другом и двигаются относительно друг друга. Как известно из школьного курса физики трущиеся детали приводят к износу друг друга, то есть они просто изнашиваются. Для того чтобы снизить этот износ, как правило, используют смазывающие средства. В автомобильных двигателях для смазки трущихся деталей, снижения их износа и уменьшения силы трения между деталями для увеличения КПД мотора применяется система смазки.

На картинке – схема работы системы смазки рядного ДВС

На этой схеме мы видим часть системы смазки ДВС. Внизу располагается так называемый картер – это некий поддон, в котором находится смазочное масло. В первую очередь масло под давлением подается в масляный фильтр, там очищается и по одним каналам попадает к коренным и шатунным подшипникам коленчатого вала. По другим каналам масло подводится в газораспределительный механизм, поскольку распредвал также испытывает трение и соответственно должен смазываться.

После того как масло сделало свое дело, смазало все необходимые детали, оно стекает по каналам обратно в поддон. Таким образом, происходит круговорот, стекающее масло через сетку попадает в масляный насос, затем в фильтр, после в систему смазки, возвращается в картер и опять по кругу.

Стоит отметить, если по каким-то причинам масло не может попасть в фильтр, то при превышении давления определенного значения открывается редукционный клапан и лишнее масло стекает обратно в поддон ДВС, что предотвращает поломку масляного насоса. Также на некоторых мощных моторах в системе предусматриваются еще и радиаторы для того, чтобы это моторное масло охлаждать.

Система охлаждения

Как известно во время работы ДВС выделяется большое количество тепла. Цилиндр двигателя может нагреться до нескольких сотен градусов. Поэтому для того чтобы отвести лишнее тепло от самых разогреваемых деталей применяется система охлаждения двигателя.

Для этого в автомобильных моторах предусмотрены специальные полости, которые заполнены охлаждающей жидкостью. И вот эта жидкость, двигаясь по системе охлаждения, принудительно омывает стенки цилиндров и другие наиболее горячие элементы, отбирая у них тепло.

Практически во всех современных ДВС установлена система охлаждения жидкостного типа, которая состоит из следующих элементов:

  • Радиатор с вентилятором системы охлаждения;
  • Термостата;
  • Водяной помпы;
  • Расширительного бачка;
  • Радиатора и вентиляторов системы отопления салона;
  • Датчика температуры охлаждающей жидкости.

На картинке – система жидкостного охлаждения автомобильного двигателя

Принцип работы системы охлаждения на всех двигателях примерно одинаков. В целом работает система в двух режимах:

  1. До температуры срабатывания термостата. Когда охлаждающая жидкость в системе течет по малому кругу, протекает лишь в самом двигателе.
  2. Выше температурного порога срабатывания термостата. Когда температура охлаждающей жидкости превышает заданный температурный порог, при котором срабатывает термостат. При этом внутренние каналы системы охлаждения переключаются, и жидкость начинает течь по большому кругу, в частности через радиатор охлаждения.

Температура срабатывания термостата, как правило, составляет около 90 градусов. На разных моделях автомобилей это значение может немного отличаться. Таким образом, данная система не позволяет двигателю перегреться, отводя тепло от самых горячих элементов и поддерживая оптимальную температуру работы мотора.

Как работает двигатель внутреннего сгорания? Такты работы ДВС

Тактом называют процесс, который происходит в цилиндре за одно движение поршня в нижнюю или верхнюю мертвую точку, а сумму этих тактов, как правило, называют рабочим циклом ДВС. Как уже было сказано выше, бывают двухтактные и четырехтактные двигатели.

Четырехтактный мотор

Если ДВС осуществляет четыре этапа рабочего цикла, то двигатель называют четырехтактным. Давайте разберем каждый такт данного типа двигателя более детально.

  1. Первый такт называется «впуск». Он сопровождается образованием горючей смеси из поступающего топлива и воздуха. Далее происходит подача горючей смеси в камеру сгорания через впускной клапан за счет снижения давления в цилиндре, когда поршень движется вниз.
  2. Второй такт определяется как «сжатие». В этот момент впускной клапан закрывается, и поршень поднимается в верхнюю мертвую точку, сжимая топливо. Таким образом, первые два такта производят один поворот коленвала.
  3. Третий такт имеет название «рабочий ход». Топливо поджигается искрой от системы зажигания, либо оно впрыскивается и самовоспламеняется от сжатия в случае дизельного ДВС. После чего в камере сгорания происходит воспламенение горючей смеси с образованием большого количества продуктов распада. Благодаря этому явлению давление в цилиндре резко увеличивается, опуская при этом поршень в низ. Такое движение поршня запускает второй оборот коленвала.
  4. Последний такт называется «выпуск». Данный процесс сопровождается открытием выпускного клапана, после чего поршень снова поднимается вверх и выхлопные газы просто выводятся из камеры цилиндра через открытый клапан.

На картинке – рабочий цикл четырехтактного двигателя

Рабочий цикл четырехтактного ДВС, благодаря движению поршней в моторе, позволяет произвести два оборота коленчатого вала, которые в конечном итоге и преобразуются во вращение колес.

Как работает ДВС, описание и анимация

Главный принцип работы ДВС – расширение объема газов в замкнутом пространстве цилиндра от тепла, возникающего в результате сгорания топлива.

Чтобы двигатель работал непрерывно, реализуется цикл, состоящий из:

  1. Поступления топливной смеси в цилиндр, Поджога и сгорания смеси;
  2. Рабочего хода поршня;
  3. Выпуска газов.

Импульс, полученный от сгоревшего топлива, толкает поршень, коленчатый вал поворачивается. Так энергия преобразуется в движение. Выше мы описали как работает ДВС, прикрепляем анимацию.

Виды двигателей внутреннего сгорания

Таких классификаций очень много, но мы начнем с самой большой – это дизель и бензин. Разница этих двух моторов в виде топлива, которое сжигается в цилиндрах. В отличие от бензинового, в дизельном моторе отсутствует система зажигания, так как воспламенение смеси выполняется только сжатием. Помимо этого, питание осуществляется при помощи насоса высокого давления и форсунок. Все остальные узлы и детали имеют схожее строение, а также назначение. Дизельный мотор намного мощнее и экономичнее, за счет более эффективного использования смеси.

По количеству цилиндров и расположению

Вот тут самое интересное, ведь чем больше цилиндров, тем выше объем, а значит, мотор работает намного производительнее. Изначально, все моторы комплектовались рядным расположением цилиндров, а их количество часто ограничивалось шестью. Чтоб увеличить объем мотора и сохранить место, разработчики создали V образный двигатель, в котором два ряда располагались друг к другу под углом. Такой вид моторов популярен среди американских классических автомобилей, а также многих грузовиков.

Устройство ДВС

В настоящие момент существуют и двигатели, в которых поршня полностью отсутствуют. Ярким тому примером является роторно-поршневой мотор, который вместо камеры сгорания использует круглую полость, а внутри вращается ротор, который делит эту полость на три неравные части. В первую подается смесь, затем при вращении ротор сжимает ее о стенки и воспламеняет.

По аналогичному принципу, происходит микровзрыв, который заставляет ротор вращаться быстрее, а выпуск выполняется в первой же полости. Такой мотор обладает большой мощностью и почти полностью исключает вибрации, делая работу эффективнее, однако имеет большие трудности со смазкой, которую очень трудно подать внутрь РПД.

Последним представителем ДВС является газотурбинный, но так как он не применяется на автомобилях, рассматривать его устройство мы не будем.

Главной проблемой современного поршневого двигателя является то, что он обладает максимальной производительностью только в некотором количестве оборотов. К примеру, если взять за основу средний автомобиль, то его максимальная мощность будет достигаться только при 3000 об/мин. Если их количество будет больше, то КПД мотора резко падает. Конечно, современные двигатели имеют и большую мощность, однако общая проблема для них остается до сих пор.

Показатели двигателей

Силы, действующие в цилиндре
Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:

  • рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
  • давления горящих газов в цилиндрах , которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется “стуком поршневых пальцев”) или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:

  • рабочего объема , что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
  • оборотов коленчатого вала , число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
  • давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Вам будет интересно  Нормы расхода топлива 2021 Минтранс

Конструктивные параметры двигателей

Любой двигатель характеризуется следующими конструктивно заданными параметрами (рис. 2), практически неизменными в процессе эксплуатации автомобиля.

Конструктивные параметры двигателей

Объем камеры сгорания — объем полости цилиндра и углубления в головке над поршнем, находящимся в верхней мертвой точке — крайнем положении на наибольшем удалении от коленвала.

Рабочий объем цилиндра — пространство, которое освобождает поршень при движении от верхней до нижней мертвой точки. Последняя является крайним положением поршня на наименьшем удалении от коленвала.

Полный объем цилиндра — равен сумме рабочего объема и объема камеры сгорания.

Рабочий объем двигателя (литраж) складывается из рабочих объемов всех цилиндров.

Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем при перемещении поршня из нижней мертвой точки в верхнюю. Для бензиновых двигателей определяет октановое число применяемого топлива.

Устройство двигателя автомобиля. Описание, принцип работы

Здравствуй, мой многоуважаемый читатель!
Как ты наверное понял, сейчас пойдёт речь об устройстве двигателя в автомобиле, но перед этим я хотел бы сказать, что я запускаю целый цикл статей, который включает в себя разбор всех устройств находящихся в автомобиле. Если интересно, то переходи на мой канал и узнай, как полностью устроен автомобиль.

Итак, начнём с простого. Двигатель внутреннего сгорания или же кратко ДВС

— это самый распространённый тип двигателя, использующийся в автомобилях и не только.

Основные механизмы двигателя,

которые характеризуют его производительность:


Цилиндр
– это самая важная часть силового агрегата, в автомобиле их как правило 4 и более.

• Свеча зажигания

— генерирует искру, которая воспламеняет топливно-воздушную смесь. Благодаря этому и происходит процесс сгорания топлива. На один цилиндр приходятся по одной свече.

• Клапаны впуска и выпуска

— клапан впуска открывается, когда нужно впустить топливо, а клапан выпуска открывается тогда, когда нужно выпустить отработанные газы.

Оба клапана крепко закрыты, когда в двигателе происходят такты сжатия и сгорания. Это обеспечивает необходимую полную герметичность.

— представляет собой металлическую деталь, которая имеет форму цилиндра. В двигателе выполняет движение вверх-вниз.


Поршневые кольца
— служат уплотнителями внешней кромки поршня и внутренней поверхности цилиндра. Также они имеют две цели:

— не дают попадать горючей смеси в картер ДВС из камеры сгорания в моменты сжатия и рабочего такта.

— не дают попасть маслу из картера в камеру сгорания, ведь там оно может воспламениться. Если автомобиль начинает сжигать масло, это говорит о том, что нужно менять поршневые кольца, которые уже не обеспечивают должного уплотнения.


Шатун
— служит соединительным элементом между поршнем и коленчатым валом.

• Коленчатый вал

— преобразует поступательные движения поршней во вращательные

• Распределительный вал

— основная деталь газораспределительного механизма (ГРМ) , служащего для синхронизации впуска или выпуска и тактов работы двигателя.

Принцип работы двигателя внутреннего сгорания:

Существует 4 такта работы ДВС:

— это процесс, происходящий в цилиндре за один ход поршня.

1 такт — впуск.

Открывается впускной клапан, топливо заполняет цилиндр, тем самым поршень сдвигается с верхней мёртвой точки вниз.

2 такт — сжатие.

Цилиндр начинает подниматься вверх, тем самым сжимая топливо, находящиеся в цилиндре до размеров камеры сгорания.

3 такт — рабочий ход.

После того, как топливо во втором такте сжалось до размеров камеры сгорания, свеча зажигания поджигает топливную смесь, тем самым заводя двигатель. Данный такт является самым ключевым, т.к. благодаря ему автомобиль начинает работать.

4 такт — выпуск.

После третьего такта, в цилиндре вырабатываются газы, тем самым опуская поршень до нижней мёртвой точки. В данном такте открывается выпускной клапан и газы выходят наружу.

Принцип работы 2-тактного ДВС Рабочий цикл 4-тактного мотора

Системы двигателя

Надёжная и долговременная работа двигателя внутреннего сгорания невозможна без питания, смазки, охлаждения. Кроме того, нужно обеспечить первый запуск коленвала и каждый раз воспламенять рабочую смесь в цилиндрах. Для этих целей разработаны следующие системы двигателя:

  • смазки;
  • охлаждения;
  • питания;
  • запуска;
  • зажигания;
  • впрыска;
  • управления.

Если раньше системы были механические, сейчас в них появляется больше электроники. Электронное управление делает работу мотора высокоэффективной, экономичной и надёжной. Системы становятся компактными, но требуют качественного и регулярного обслуживания.

ДВС

ГРМ — газораспределительный механизм

Устройство двигателя внутреннего сгорания включает в себя ГРМ. Его функция — вовремя подать в определённые цилиндры рабочую смесь, а также выпустить из этих цилиндров продукты горения. Работу механизма определяют последовательность работы цилиндров и фазы газораспределения.

Устройство ГРМ

Для функционирования ГРМ необходимы минимум 1 впускной и 1 выпускной клапан на каждый цилиндр. Диаметр тарелки впускного клапана обычно больше, чем у выпускного, что позволяет улучшить наполняемость цилиндра и увеличить рабочие показатели ДВС. Открытие и закрытие клапанов регулирует кулачковый распределительный вал. Сам вал приводится цепью или ремнём от коленвала.

Конструктивно привод клапанов делится на 4 вида:

  • OHV — распредвал расположен в блоке цилиндров, а управление клапанами происходит через дополнительные толкатели и штанги;
  • ОНС — распредвал размещён в головке блока, привод клапанов осуществляется за счёт рычажных толкателей;
  • DОНС — схема расположения с двумя распредвалами в головке блока. В этом случае один вал используется для впускных, а другой для выпускных клапанов.

Похожая статья Технические характеристики двигателя Тойота Эстима

Варианты привода клапанов

Фазы газораспределения — это моменты открытия и закрытия клапанов, выраженные в углах поворота коленвала. Правильно подобранные фазы обеспечивают лучшее наполнение и очистку цилиндров. Если в устройство двигателя включить механизм управления фазами VVT, это позволит получить максимальную мощность при высокой частоте вращения коленвала и экономить ресурсы на малых оборотах.

Система смазки

Смазка двигателя автомобиля защищает детали от трения, коррозии, охлаждает конструкцию и смывает грязь. В ДВС часто используются комбинированные системы, в которых моторное масло подаётся под давлением и разбрызгиванием.

Система смазки

В типичной смазочной системе масло заливают через маслозаливную горловину в поддон картера до определённого уровня. При работе двигателя маслонасос высасывает из поддона смазку через маслозаборник. Затем масло фильтруется от примесей и переходит в главную магистраль.

Магистраль представляет собой ответвления каналов, по которым масло поступает к коренным подшипникам коленвала, опорам распредвала, поршневой группе и другим деталям. Из зазоров подшипников смазка вытекает и разбрызгивается движущимися элементами в виде капель и масляного тумана. Под действием силы тяжести масло стекает в поддон, смазывая при этом привод ГРМ.

В высокофорсированных ДВС спорткаров, в тракторах и спецавтомобилях применяется система смазки с сухим картером. Масло постоянно выкачивается дополнительным маслонасосом в масляный бак, из которого подаётся под давлением в систему смазки двигателя. Такое решение помогает предотвратить перемещение масла при резких манёврах, когда маслозаборник окажется выше уровня масла.

Системы смазки ДВС

Система смазки выполняет функцию вентиляции картера от газов, которые прорываются из цилиндра через поршневые кольца. Соединяясь с парами воды, газы образуют агрессивные кислоты и могут вызвать коррозию. Самым простым способом вентиляции картерных газов является выведение их в атмосферу. Однако, высокие нормы экологии привели к появлению закрытых принудительных систем вентиляции, в которых газы направляются в камеры сгорания через впускной тракт.

Система охлаждения

Температура в камере сгорания в момент воспламенения доходит до 2500℃. Перегрев цилиндров, поршней, головки блока и других деталей приводит к потере мощности, тепловому расширению, выгоранию масла, обгоранию клапанов и заклиниванию двигателя. Для охлаждения конструкции разработана система, которая принудительно отводит тепло потоком воздуха или жидкости.

Жидкостная система охлаждения

Воздушная система охлаждения ДВС применяется на мопедах, мотоциклах и газонокосилках. Жидкостная система более сложная и шумная, но обеспечивает равномерный и эффективный отвод тепла. В качестве теплоносителя используются антифризы — жидкости с низкой температурой замерзания.

Для отвода тепла от блока цилиндров и головки предусмотрена рубашка охлаждения — канал для прохождения жидкости. Рубашка соединяется патрубками с радиатором, который забирает тепло от жидкости и выбрасывает его в воздух. За радиатором располагают вентилятор, который увеличивает скорость прохождения воздуха. Вентилятор приводится от ременной передачи коленвала или электропривода. Часто вентилятор оснащают вязкостной или гидравлической муфтой.

Во время работы двигателя охлаждающая жидкость циркулирует от насоса, который приводится от коленвала или электродвигателя. Чтобы система обеспечивала оптимальный температурный режим, в контур охлаждения встраивают термостат с управляемым теплочувствительным элементом. Термостат может быть соединён с электронным блоком управления.

Система подачи топлива

Система подачи топлива в двигателях внутреннего сгорания может быть карбюраторной или инжекторной. Наиболее распространённой является инжекторная система питания с распределённым впрыском. Она состоит из следующих подсистем:

  • подачи и очистки топлива;
  • подачи и очистки воздуха;
  • улавливания и сжигания паров бензина;
  • выпуска и дожигания отработанных газов;
  • электронной части с набором датчиков.

инжекторная система питания с распределённым впрыском

Во время включения ДВС запускается электробензонасос, который закачивает топливо из бака. Бензин проходит через топливный фильтр к рампе с форсунками. На корпусе форсунки находятся электрические контакты, которые регулируют количество топлива, впрыскиваемого в цилиндр.

За количеств воздуха, поступающего в цилиндры ДВС, отвечает дроссельная заслонка. Она работает от механического троска или электропривода. Регулировку оборотов на холостом ходу осуществляет шаговый электродвигатель или непосредственно компьютер. Для корректной работы системы впрыска электронный блок получает информацию с датчиков массового расхода воздуха, температуры охлаждающей жидкости, положения и частоты вращения коленвала и др.

Помимо распределённого впрыска существуют системы непосредственного впрыска. Однако, они более сложные и дорогие. Специалистам компании Mitsubishi удалось разработать сбалансированную систему, которая улучшила топливную экономичность и повысила мощность мотора. Это объясняется возможностью двигателя работать на обеднённых смесях и повышением степени сжатия до с 10 до 12,5.

Впервые система непосредственного впрыска появилась в моторах 1,8 GDI на Mitsubishi Galant в 1996 году. Сейчас подобные двигатели внутреннего сгорания встречаются в машинах Peugeot-Citroen, Renault, Toyota.

Системы питания дизельных ДВС отличаются от бензиновых. Существуют две схемы подачи дизельного топлива: с разделённой камерой сгорания и непосредственный впрыск. Первый вариант работает мягче и тише, но распространение получил второй вариант с лучшей топливной экономичностью в 20 %.

Похожая статья Характеристики и стоимость контрактного двигателя Тойота Сурф

Система непосредственного впрыска

Дизельное топливо поступает из бака в нагнетательный трубопровод, затем через подкачивающий насос в топливный фильтр. После очистки дизель попадает в топливный насос высокого давления ТНВД, который распределяет топливо по форсункам.

Альтернативой системе с ТНВД является система питания Common Rail от Bosch. Особенность системы — установка аккумуляторного узла со штуцерами для подсоединения форсунок. Топливо в узле находится постоянно под высоким давлением, что позволяет подавать в цилиндр небольшие и точно отмеренные порции.

Выхлопная система

Выхлопная система влияет на мощность ДВС, расход топлива и количество выбросов в атмосферу. Для уменьшения содержания вредных веществ в отработанных газах применяется каталитический нейтрализатор. Он состоит из восстановительного и двух окислительных катализаторов, которые превращают углеводороды в водяной пар, а окиси углерода — в углекислый газ. Нейтрализатор устанавливают максимально близко к выпускному коллектору.

Выхлопная система

Нейтрализатор работает эффективнее, если двигатель внутреннего сгорания работает на смеси из воздуха и топлива в соотношении 14,7:1. Количество воздуха в отработанных газах отслеживает датчик лямбда-зонд. Уровень вредных окисей азота снижают с помощью системы рециркуляции путём забора части газов из выпускной системы для подачи его во впуск.



Автомобиль от А до Я: устройство двигателя внутреннего сгорания

Новая рубрика, готовьтесь! Будет много познавательного текста с картинками.

Вам будет интересно  Что делать, если машина не заводится: простые способы завести

Двигатель внутреннего сгорания (ДВС) является сердцем автомобиля. Главная особенность этих двигателей заключается в том, что воспламенение топлива происходит внутри камеры сгорания (КС), а не в сторонних внешних агрегатах.

В процессе работы тепловая энергия, выделяемая, вследствие, сгорания топлива, преобразуется в механическую.

По применяемому топливу

— легкие жидкие (газ, бензин)

— тяжелые жидкие (дизельное топливо)

— Бензиновые двигатели

Бывают двух типов: бензиновые карбюраторные и бензиновые инжекторные.

В первом случае смесеобразование (смешивания топлива с воздухом) происходит в карбюраторе или во впускном коллекторе с помощью форсунок. Далее, смесь попадает в цилиндр, сжимается и поджигается искрой от свечи.

Во втором же случае, топливо впрыскивается во впускной коллектор или в цилиндр с помощью инжекторов (распыляющие форсунки).

— Дизельные двигатели

Специальное дизельное топливо (ДТ) подается в определенный момент (не доходя до мертвых точек) в цилиндр под высоким давлением с помощью форсунки.

Движение поршня сжимает смесь еще сильнее, топливо нагревается, с последующим воспламенением горючей смеси (за счет высокого давления).

Такие двигатели характеризуются малыми оборотами и высоким крутящим моментом.

— Газовые двигатели

В качестве топлива, двигатель использует углеводороды. В основ, такие двигатели работают на пропане, но встречаются и другой газ в качестве топлива.

Главное отличие от других двигателей — высокая степень сжатия. Такие двигатели меньше изнашиваются благодаря тому, что топливо уже подается в газообразном состоянии. Также, экономичность газовых двигателей на лицо — газ дешевле бензина.

Стоит отметить и экологичность — отсутствует дымность двигателя.

По способу воспламенения

— от искры (бензиновые)

— от сжатия (дизельные)

По числу и расположению цилиндров

— Рядный двигатель

Наиболее распространенная компоновка, цилиндры расположены в один ряд перпендикулярно коленчатому валу. Такие двигатели просты в конструкции, но при большом количестве цилиндров — увеличивается размер двигателя в длину.

— V-образный

Для уменьшения длины агрегата, цилиндры располагают под углом от 60 до 120 градусов, при этом, продольные оси цилиндров совпадают с продольной осью коленчатого вала.

Двигатель получается довольно небольших размеров в продольном отношении (короткий).

Из минусов: довольно большая ширина двигатели и раздельные головки блока, что приводит к увеличению себестоимости при изготовлении.

— Оппозитный

Горизонтально-оппозитный двигатель имеет меньшие габариты по высоте, что позволит снизить центр тяжести всего автомобиля. Из плюсов можно выделить: компактность, симметричность компоновки.

— VR-образный

За счет 6-ти цилиндров, расположенных под углом 150 градусов, образуется весьма компактный (узкий и короткий) двигатель. А также, этот двигатель имеет всего одну головку блока.

— W-образный

В этих двигателях соединены два ряда цилиндров в VR-исполнении.

Угол расположения цилиндров равен — 150 градусам, а сами ряды — под углом 720 градусов.

Штатный автомобильный двигатель состоит из 2-х механизмов и 5-ти систем.

Устройство двигателя внутреннего сгорания Устройство двигателя внутреннего сгорания Устройство двигателя внутреннего сгорания газотурбинный двигатель Устройство двигателя внутреннего сгорания роторно-поршневой двигатель Устройство двигателя внутреннего сгорания

Классификация двигателей

Конструкция ДВС бывает различной. Каждый разработчик мотора пытается внести свои улучшения, повысить мощность и экономичность, снизить выбросы вредных веществ и стоимость агрегата. Давайте посмотрим, по каким критериям классифицируют двигатели внутреннего сгорания.

По рабочему циклу

Рабочий цикл ДВС — это последовательность процессов внутри каждого цилиндра, в результате которой энергия топлива превращается в механическую энергию. Цикл может быть двухтактным или четырехтактным:

  • четырёхтактный мотор работает по «циклу Отто» или Аткинсона и включает в себя такты: впуск, сжатие, рабочий ход и выпуск;
  • в двухтактном ДВС впуск и сжатие происходят одновременно за один такт, а рабочий ход переходит в выпуск на втором такте.

Если сравнивать двигатели внутреннего сгорания одной мощности по рабочему циклу, 2-тактный окажется проще и компактнее. А вот по топливной экономичности и экологическим показателям в выигрыше окажется 4-тактный мотор.

По типу конструкции

По конструкции ДВС делятся на:

  • поршневые, в которых расширяющиеся при сгорании газы приводят в движение поршень, который в свою очередь толкает коленвал;
  • роторные.Растущее давление газов воздействует на ротор, соединённый с корпусом через зубчатую передачу. Роторный мотор не имеет ГРМ. Его функции выполняют впускные и выпускные окна в боковых стенках корпуса;
  • газовые турбины. В этих двигателях внутреннего сгорания газы с высокой скоростью попадают на лопатки силовой турбины, которая соединяется через редуктор с трансмиссией. Для нагнетания воздуха в мотор установлен турбинный компрессор.

Моторы могут быть без наддува, с турбокомпрессором или нагнетателем. Конструкция подбирается под назначение двигателя: будь то стационарная установка или транспорт.

По количеству цилиндров

Одно цилиндровые двигатели работают неравномерно, что не критично для лодочных моторов, мопедов и мотоциклов. Двигатель автомобиля устроен сложнее, поскольку нужна высокая мощность, а значит и большой объём цилиндра. Так, в транспорте малого класса применяются 4-цилиндровые моторы. В грузовые автомобили ставят 6- и 8-цилиндровые ДВС.

В моделях премиум класса встречаются 12-цилиндровые агрегаты. Например, в Audi A8 установлен мотор W12 с 4 клапанами на каждый цилиндр и мощностью 420 л.с.

12-цилиндровый ДВС от Ауди

По принципу создания рабочей смеси

Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:

  • внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
  • внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.

По расположению цилиндров

Поршневые двигатели автомобиля различаются компоновочной схемой блока цилиндров и могут представлять собой конструкцию:

  • рядную;
  • V-образную;
  • оппозитную с углом развала между поршнями 180°;
  • VR-образную;
  • W -образную.

Похожая статья Мотор Мерседес M276: отзывы и проблемы

В зависимости от компоновки моторы устанавливаются в подкапотное пространство вертикально, горизонтально или под углом к вертикальной плоскости для уменьшения высоты конструкции.

Расположение цилиндров

По типу топлива

Работа двигателя внутреннего сгорания происходит за счёт сжигания смеси воздуха с бензином, газа или дизеля. В качестве газового топлива ДВС применяются углеводород, сжиженный газ, смесь пропана и бутана, метан, водород.

По принципу работы ГРМ

Выше мы рассматривали, что ГРМ может быть устроен по схеме OHV, ОНС или DОНС. Выбор компоновки влияет на принцип работы двигателя. Также приводы клапанов различаются способами регулировки тепловых зазоров, которые увеличиваются в результате нагрева конструкции. Настройку зазоров проводят вручную, меняя специальные винты в коромыслах, или устанавливают гидрокомпенсаторы для автоматической регулировки.


Системы

  • охлаждение
  • смазка
  • питание
  • зажигание
  • выпуска отработавших газов

Рассмотрим механизмы двигателя подробнее.

Кривошипно-шатунный механизм

Данный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

В свою очередь, кривошипно-шатунный механизм состоит из:

1) блока цилиндров с картером;

2) головки блока цилиндра;

3) поддона картера двигателя;

6) коленчатого вала;

Принцип работы двигателя

Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.

Принцип работы четырехтактного двигателя схема

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Принцип работы четырехтактного двигателя gif

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Принцип работы двухтактного двигателя gif

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Блок цилиндров

Представляет собой цельноотлитую деталь, объединяющей цилиндры двигателя. На нем располагаются опорные поверхности для установки коленчатого вала, а к верхней части, как правило, крепится головка блока цилиндров.

Цилиндры в блоке делаются либо отлитыми заедино с блоком, либо представляют собой отдельные сменные втулки.

Также, блок отрабатывает еще, не менее важную, функцию — по отверстия в блоке под давлением подается масло для смазки.

Внутренние стенки цилиндров служат направляющими для поршней во время их перемещения.

Поршень

Цилиндрическая деталь, которая совершает возвратно поступательное движение внутри цилиндра.

Поршень состоит из: днища, уплотняющей части, направляющей части (юбка).

Форма днища зависит от возложенных на поршень задач. Вогнутое днище позволяет создать более рациональную камеру сгорания. Выгнутое — делает поршень прочнее, но уменьшается рациональность камеры сгорания.

Днище с уплотняющей частью образуют головку поршня. В уплотняющей части располагаются маслосъемные и компрессионные кольца.

Юбка поршня служит для направления движения в цилиндре.

Газораспределительный механизм

— впускных и выпускных клапанов.

Распределительный вал

Как правило (в современных автомобилях) расположен в верхней части головки цилиндров.

Неотъемлемой частью распредвала являются его кулачки. Их ровно столько, сколько впускных и выпускных клапанов. Эти кулачки надавливая на рычаг толкателя клапана, открывают его, а «сбегая» с рычага, клапан закрывается от действия возвратной пружины.

Клапана

Клапан состоит из плоской шляпки (головки) и стержня. Причем, диаметр головки впускного клапана делают несколько больше, чем диаметр головки выпускного клапана (это делается для лучшего наполнения топливом цилиндров).

Общее устройство двигателя. Основные механизмы

Видео: Общее устройство двигателя. Основные механизмы

Двигатель внутреннего сгорания — это тепловой двигатель, преобразующий тепловую энергию топлива в механическую работу. В двигателе внутреннего сгорания топливо подается непосредственно внутрь цилиндра, где оно воспламеняется и сгорает, образуя газы, давление которых приводит в движение поршень двигателя.

Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у карбюраторных двигателей) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться. Все двигатели, устанавливаемые на автомобили, состоят из следующих механизмов и систем.

Система питания

Смесь воздуха с топливом сгорает в цилиндрах. Рассматриваемая система регулирует их подачу в строгом количестве и пропорции. Бывает внешнее и внутреннее смесеобразование. В первом случае воздух и топливо перемешиваются вне цилиндра, а в другом — внутри него.

Систему питания с внешним образованием смеси имеет специальное устройство под названием карбюратор. В нем топливо распыляется в воздушной среде, а затем поступает в цилиндры.

Устройство двигателя автомобиля с системой внутреннего смесеобразования называется инжекторным и дизельным. В них происходит заполнение цилиндров воздухом, куда впрыскивается топливо посредством специальных механизмов.

Источник https://dixtorg.ru/vidy/dvigatel-vnutrennego-sgoraniya.html

Источник https://dongfeng-auto.ru/ustrojstvo-motora/kak-rabotaet-dvigatel-avtomobilya.html

Источник

Источник

Author: mag

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *