Устройство автомобилей

Содержание

Устройство автомобилей

Микропроцессорная система управления корректирует состав горючей смеси, поступающей в цилиндры двигателя и процессы ее поджигания на основании информации, поступающей от многочисленных датчиков, расположенных в разных местах двигателя и его систем. Эти датчики позволяют процессору сформировать команды продолжительности впрыска топлива форсунками, а также момент подачи напряжения искрообразования на свечи зажигания.
Благодаря этой сложной информационной сети, поставляющей в «мозговой центр» управления двигателем данные о количестве поступившего в цилиндры воздуха, его температуре, температуре двигателя, положению педали акселератора и дроссельной заслонки, угловом перемещении коленчатого и распределительного валов, а также о составе отработавших газов, достигается высокая экономичность и динамическая эффективность работы двигателя.

Более подробная информация о типах датчиков и их классификация приведена на этой странице.

Датчик массового расхода воздуха

Датчик массового расхода воздуха (ДМРВ) преобразует значение массы воздуха, поступающего в цилиндры, в электрический сигнал. Контроллер использует информацию от датчика массового расхода топлива воздуха для определения длительности импульса открытия форсунок.
Чаще всего этот датчик расположен между воздушным фильтром и шлангом впускной трубы.

В зависимости от устройства и принципа действия можно выделить несколько типов датчиков массового расхода воздуха, которые наиболее часто применяются на автомобилях:

  • механические (флюгерные);
  • ультразвуковые;
  • термоанемометрические.

назначение и устройство датчика массового расхода воздуха

Термоанемометрический датчик массового расхода воздуха применяется на автомобилях ВАЗ и состоит из корпуса, проточного канала с размещенной на входе решеткой-стабилизатором и диффузора. В обводном канале размещены измерительные и термический компенсационные элементы, а также соединительная электрическая колодка.
Датчик установлен во впускном тракте между воздушным фильтром и корпусом дроссельной заслонки.

Через сетку из тонких платиновых нитей (измерительных элементов), нагретых электрическим током до температуры 170 ˚С, проходит весь поступающий в цилиндры двигателя воздух. Чем больше поток, тем выше должна быть сила тока, чтобы поддерживать температуру нитей на постоянном уровне.

Входящий поток воздуха охлаждает чувствительный элемент, следовательно, для поддержания его температуры необходим больший ток. По тому, насколько увеличился ток, блок управления двигателем определяет, какое количество воздуха поступает в двигатель.
Некоторые ДМРВ выдавали частотные выходные сигналы, т.е. у них изменяемой величиной была частота выходных импульсов. Такие датчики массового расхода воздуха применялись в двигателях автомобилей ВАЗ, оснащенных контроллером «Январь-4.1».

Отсутствие регулировочных винтов указывает на то, что данная система управления является адаптивной. Внутренняя электронная схема сконструирована таким образом, что температура измерительной нити остается постоянной, даже если она на 120 ˚С выше температуры поступающего воздуха.

Обобщенная электрическая схема соединений датчика содержит измерительные элементы, термические компенсационные резисторы и блок усиления сигналов, соединенный с контроллером. Выходной сигнал датчика – частотный.

Загрязнение нити может привести к неточному определении параметров горючей смеси. Функция прокаливания нити включается, когда система отключена. В этом случае происходит нагревание нити до 1000 ˚С, что позволяет удалить скопившиеся на ней отложения.

Современные датчики массового расхода воздуха имеют более сложное устройство. Вместо проволоки или сетки, в качестве чувствительного элемента используется тонкая пленка, на которой размещены температурные датчики и нагревательный элемент. В центре пленки находится зона подогрева, степень ее нагрева контролируют температурные датчики.
По обе стороны пленки расположены два дополнительных температурных датчика, т.е. один находится прямо на пути воздушного потока, а второй скрыт за пленкой. Когда автомобиль стоит на месте, температура обоих датчиков одинакова, при движении первый датчик охлаждается входящим потоком воздуха, а второй имеет практически неизменную температуру. Разница температур температурных датчиков пропорциональна массе всасываемого воздуха.

При отказе датчика массового расхода воздуха блок управления переходит в аварийный режим работы, используя для формирования команд длительности впрыска только информацию о положении дроссельной заслонки. В результате возрастает расход топлива, а частота вращения коленчатого вала не опускается ниже 1500 об/мин.
Чтобы проверить исправность датчика, его следует отключить от электрического разъема. Если автомобиль при отключении датчика становится резвее, значит, ДМРВ неисправен.

О сканировании электронных блоков управления и считывании ошибок, в том числе — неисправности датчиков, подробно описано на этой странице.

Датчик скорости

Датчик скорости автомобиля (ДСА) преобразует значение скорости автомобиля в электрический сигнал. Он предназначен для формирования импульсов, количество которых в единицу времени пропорционально скорости автомобиля.

назначение и устройство датчика скорости

Датчик скорости установлен на коробке передач (сверху), информирует контроллер о скорости автомобиля и имеет средний уровень надежности. Вблизи датчика часто происходит окисление разъемов и проводов.
Выход из строя датчика скорости приводит к тому, что двигатель глохнет при движении в режиме холостого хода, т. е. при закрытой дроссельной заслонке.

Этот датчик при неисправности передает ошибочные данные, что и приводит к нарушению работы не только двигателя, но и других узлов автомобиля. Измеритель скорости автомобиля (ДСА) отсылает сигналы на датчик, который контролирует работу мотора на холостых оборотах, а также управляет потоком воздуха, который обходит дроссельную заслонку. Чем больше скорость машины, тем больше частота этих сигналов.

Основные признаки неисправности датчика скорости:

  • Отсутствует стабильность холостого хода;
  • Неправильно функционирует или вообще не функционирует спидометр;
  • Увеличенный расход топлива;
  • Снижение приемистости двигателя.

Также блок управления может выдавать ошибку об отсутствии сигналов на ДСА.
Чаще всего неисправность вызывается разрывом цепи, поэтому, прежде всего, нужно проверить ее целостность.

Датчики кислорода

Кислородный датчик (Oxygen Sensor), или, как его еще называют — λ-зонд (лямбда-зонд) — служит для определения концентрации кислорода в отработавших газах. Благодаря информации, поставляемой электронному блоку управления (ЭБУ) этим датчиком, "мозговой центр" автомобиля может корректировать состав горючей смеси, добавляя или убавляя топливо при необходимости. В системе питания современного автомобиля, как правило, два λ-зонда — диагностический и управляющий.

Датчик кислорода диагностический преобразует значение концентрации кислорода в отработавших газах после нейтрализатора в электрический сигнал.

Датчик кислорода управляющий преобразует значение концентрации кислорода в отработавших газах до нейтрализатора в электрический сигнал.

Кислородный датчик представляет собой своеобразный гальванический элемент (источник электрического тока), размещенный в системе выпуска отработавших газов перед нейтрализатором (в среду горячих газов).
Внешне кислородный датчик напоминает свечу зажигания, имеет резьбовую часть с резьбой 18×1,5 мм, которая вворачивается в трубу системы выпуска отработавших газов, и несколько отходящих от наружного хвостовика проводов.

назначение и устройство датчиков кислорода и лямбда-зондов

Чувствительным элементом кислородного датчика является омываемый отработавшими газами керамический наконечник 4 ( см. рис. ), защищенный от механических повреждений металлическим кожухом 5 с прорезями для свободного прохода отработавших газов. Внутренняя часть керамического наконечника омывается атмосферным воздухом, проникающим через щели в корпусе датчика.

Кислородные датчики бывают двух типов: циркониевые и титановые.
Циркониевые кислородные датчики используют керамический элемент на основе оксида циркония ZrO, покрытый платиной – гальванический элемент, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Циркониевые датчики наиболее распространены.

назначение и устройство датчика кислорода

Титановые кислородные датчики используют керамический элемент на основе диоксида титана TiO2 и представляют собой резистор, сопротивление которого изменяется в зависимости от температуры и наличия кислорода в окружающей среде. Принцип работы титановых кислородных датчиков напоминает принцип работы датчиков температуры охлаждающей жидкости.

Для эффективной работы датчика он должен быть достаточно прогрет (но не перегрет), а также не должен быть загрязнен свинцом и кремнием, содержащимися в выхлопных газах. Для ускорения прогрева датчиков кислорода большинство современных датчиков кислорода оснащаются специальными электрическими подогревательными устройствами.

По сигналам кислородных датчиков контроллер корректирует длительность впрыска, изменяя тем самым состав горючей смеси в цилиндрах двигателя.

Датчик фаз

Датчик фаз или, как его еще называют – датчик положения распределительного вала (ДПРВ), выдает на контроллер сигнал о том, что поршень первого цилиндра находится в верхней мертвой точке (ВМТ) на такте сжатия топливовоздушной смеси. Датчик фаз применяют в системе с последовательным впрыском топлива и устанавливают с левой передней стороны головки цилиндров.

назначение и устройство датчика фаз или датчика положения распредвала

Принцип его действия основан на эффекте Холла. В пазу датчика находится обод стального диска с прорезью. Этот диск закреплен на шкиве впускного распределительного вала. Когда прорезь диска проходит через паз датчика фаз, он выдает на контроллер электрический импульс, соответствующий положению поршня первого цилиндра в ВМТ в конце такта сжатия.

Наиболее характерные признаки неисправности датчика фаз:

  • во время запуска двигателя, стартер крутится 3-5 сек, потом двигатель запускается и загорается чек на панели приборов, то есть во время запуска, блок управления дожидается показания с датчика фаз;
  • повышенный расход бензина;
  • сбои режима самодиагностики при работе двигателя автомобиля;
  • снижение динамики (приемистости) двигателя автомобиля;
  • двигатель не заводится.

Датчик температуры охлаждающей жидкости

назначение и устройство датчика температуры

Датчик температуры охлаждающей жидкости (ДТОЖ) преобразует в электрический сигнал значение температуры охлаждающей жидкости и представляет собой термический резистор, размещенный в латунном корпусе. Сопротивление термического резистора изменяется в зависимости от его температуры – чем выше температура датчика (т. е. – чем выше температура охлаждающей жидкости в системе охлаждения), тем ниже его сопротивление.
Контроллер, принимая сигнал от датчика температуры охлаждающей жидкости, корректирует продолжительность впрыска и угол опережения зажигания.
Датчик температуры охлаждающей жидкости выполняет функцию, аналогичную системе пуска и прогрева в карбюраторном двигателе, обогащая горючую смесь при низкой температуре двигателя.
Кроме того, по сигналу ДТОЖ контроллер управляет включением и выключением электродвигателя вентилятора системы охлаждения.

Датчик температуры охлаждающей жидкости влияет на важнейшие динамические, пусковые и экономические характеристики двигателя.
Основными признаками его неисправности являются:

  • включение электродвигателя вентилятора системы охлаждения при низкой температуре и их непрерывная работа;
  • затрудненный пуск двигателя;
  • неустойчивая работа и остановка двигателя на холостом ходу;
  • детонация двигателя;
  • повышенный расход топлива.

Проверить работоспособность датчика температуры охлаждающей жидкости достаточно просто. Для этого снятый датчик помещают в емкость с водой так, чтобы он не касался стенок и дна емкости. Далее подключают к контактам датчика омметр и начинают нагревать воду, контролируя температуру по термометру.
Контрольные показания должны быть примерно следующими:

Датчик положения коленчатого вала

Датчик положения коленчатого вала (ДПКВ) преобразует угловое положение коленчатого вала двигателя в импульсный электрический сигнал, на основании которого контроллер определяет положение коленчатого вала двигателя относительно ВМТ и частоту его вращения. По результатам измерения этих параметров контроллер формирует сигналы управления форсунками и системой зажигания, а также показания тахометра.
Датчик положения коленчатого вала – единственный из всех датчиков, подающих информацию контроллеру, при отказе которого работа двигателя невозможна.
По аналогии с контактной системой зажигания этот датчик выполняет функцию прерывателя, сигнализируя контроллеру о времени подачи искры, однако он формирует, также, сигнал о начале впрыска топлива форсунками.

Существует несколько типов датчика оборотов коленчатого вала:

Магнитные датчики индуктивного типа не требуют для своего потребления особого отдельного источника питания. Для сигнала электронного блока управления индицируется напряжение в определенный момент, когда через магнитное поле проходит зуб синхронизации. Это магнитное поле образуется вокруг датчика. Кроме того, что датчик контролирует обороты коленчатого вала; он также зачастую используется как скоростной датчик.

назначение и устройство датчика положения коленчатого вала

Конструктивно магнитный ДПКВ представляет собой катушку с большим количеством витков провода, расположенную на магнитопроводе. На коленчатом валу двигателя (со стороны шкива) размещен зубчатый диск, при вращении которого в катушке датчика формируется импульсное напряжение, поступающее в виде информации о положении коленчатого вала к контроллеру.
По внешней окружности диска равномерно выполнены радиальные прямоугольные зубья, при этом один зуб отсутствует. Именно этот паз на диске формирует импульс, указывающий контроллеру о положении коленчатого вала.
Радиальный зазор между зубьями диска и магнитопроводом датчика составляет 1 мм.
Нормальная работа датчика может быть нарушена налипанием на магнитопровод металлических частиц, загрязнением зубчатого диска, увеличением зазора между магнитопроводом и диском и т. п.

Датчик Холла основывается на эффекте Холла, суть которого в том, что если в постоянном магнитном поле разместить металлическую пластину, то при появлении в этом же магнитном поле металлического предмета, в пластине формируется электрический импульс (ток), который может быть использован в качестве сигнала. Потенциал, возникающий между гранями пластины очень слабый, поэтому использование эффекта Холла в датчиках стало возможным лишь недавно, с появлением устройств, способных считывать и усиливать такие импульсы.
В качестве формирователя импульсов используется диск синхронизации, возмущающий магнитное поле вокруг датчика с помощью зубьев, равномерно размещенных на ободе. Датчик оборотов коленчатого вала данного типа также используется для распределения зажигания.

Вам будет интересно  Автомобили с гибридным двигателем, плюсы и минусы, принцип работы

Оптический датчик положения коленчатого вала. В данном типе датчиков диск синхронизации выполняется с зубьями или отверстиями. Сам диск перекрывает поток света, который проходит между светоизлучателем (светодиодом) и светоприемником (фотоэлементом). Приемник перерабатывает полученный поток света в импульс напряжения, который, собственно, и передается в электронный блок управления.

Для проверки работоспособности датчика необходимо проверить наличие сигналов контроллера на любой из форсунок и катушке зажигания.
Практически это можно сделать следующим образом: отсоединить разъемы от форсунки и катушки зажигания, подключить к контактам каждого разъема ламповый пробник (необязательно одновременно, можно поочередно), и прокрутить двигатель стартером. Если нет сигналов ни на форсунке, ни на катушке зажигания, то это в большинстве случаев свидетельствует о неисправности датчика положения коленчатого вала.

Для более точного диагностирования необходимо убедиться в исправности самого контроллера, соединительной проводки и предохранителей цепи. Если же лампа хоть одного пробника будет мигать при вращении коленчатого вала, то это свидетельствует об исправности ДПКВ.
При отсутствии пробника или тестера можно вывернуть свечу зажигания и осмотреть ее. Если она влажная – это свидетельствует о том, что сигнал на форсунку поступает и впрыск происходит, т. е. можно сделать вывод об исправности датчика положения коленчатого вала.
Дальнейшие проверки можно не проводить.

Если же оказалось, что свеча сухая, то следует дополнительно проверить наличие искры. Для этого нужно обеспечить надежный контакт свечи с «массой» двигателя (например, соединить резьбовую часть свечи толстым проводом с корпусом двигателя), а на верхний контакт надеть свечной наконечник. Очень важно, чтобы контакты были надежно присоединены к свече, иначе можно испортить контроллер.
Если при работе стартера искра есть, то ДПКВ исправен. Отсутствие искры является признаком неисправности ДПКВ.

Есть еще один оригинальный способ проверки исправности датчика положения коленчатого вала. Для этого датчик снимают с кронштейна и подключают к нему колодку с проводами. Если при включенном зажигании к магнитопроводящей пластине датчика прижимать, а через некоторое время отнимать металлический (магнитопроводный) предмет (например, гаечный ключ), то будет срабатывать топливный насос, размещенный в топливном баке, что свидетельствует о работоспособности датчика.
Для того, чтобы хорошо слышать работу насоса, во время проверки датчика двери кузова нужно открыть, а заднее сиденье поднять.

Датчик положения дроссельной заслонки

назначение и устройство датчика положения дроссельной заслонки

Датчик положения дроссельной заслонки (ДПДЗ) преобразует значение угла открытия дроссельной заслонки в электрический сигнал.
Этот датчик работает совместно с датчиком положения педали акселератора, так как контроллер, обрабатывая сигнал от датчика педали, сравнивает его с текущим положением дроссельной заслонки.

Датчик положения дроссельной заслонки представляет собой потенциометрический датчик и связан с осью дроссельной заслонки. Снаружи его не видно, так как он расположен внутри дроссельного блока и при отказе его заменяют вместе с блоком. В этом случае, а также при замене контроллера, потребуется выполнить «обучение» контроллера закрытому положению дроссельной заслонки. Оно заключается в следующем:

  • убедитесь, что педаль акселератора полностью отпущена;
  • установите ключ зажигания в положение «ON»;
  • верните ключ зажигания в положение «OFF» и выждите не менее 10 секунд. Убедитесь по звуку, что в течение этого времени дроссельная заслонка перемещается.

Датчик детонации

Датчик детонации жестко закреплен на корпусе двигателя и преобразует величину механических шумов двигателя в электрический сигнал. Контроллер по сигналу датчика детонации производит уменьшение угла опережения зажигания, устраняя при этом детонацию.

назначение и устройство датчика детонации

Чувствительным элементом датчика детонации является пьезокерамический элемент. Он формирует электрический сигнал, амплитуда и частота которого соответствует амплитуде и частоте вибрации двигателя. Моменту детонации соответствует узкий диапазон сигнала определенной частоты и амплитуды, который обрабатывается контроллером, после чего он корректирует угол опережения зажигания до исчезновения детонации.

Для проверки датчика детонации следует подключить к его контактам милливольтметр (тестер) и ударить по корпусу датчика каким-либо предметом (например, рукояткой отвертки). Тестер должен зафиксировать скачок напряжения. Отказ датчика детонации контролером не парируется.
При управлении автомобилем при заведомо неисправном датчике детонации следует избегать резких увеличений нагрузки на двигатель, своевременно переходить на пониженные передачи при преодолении препятствий, не допуская возникновения звонких детонационных стуков, которые хорошо различимы на слух.

Электронная система управления двигателем в автомобиле: разбираем, что это и принцип работы

Электронная система управления двигателем — мозг, глаза и руки системы

Нужно отметить, что подобные системы управления используются и у бензиновых двигателей, и у дизельных агрегатов
В этот раз уделим внимание первым. Итак, современный блок контроля мотора управляет такими узлами:

  • впрыск;
  • зажигание;
  • топливная система;
  • впуск и выпуск;
  • система охлаждения;
  • вакуумный усилитель тормозов;
  • рециркуляция выхлопных газов;
  • устройства улавливания паров бензина.

Электронный мозг, заключённый в блоке где-то между мотором и салоном автомобиля – это лишь часть системы. Чтобы обеспечить контроль и управление параметрами силового агрегата, нужны ещё кое-какие приспособления – датчики и исполнительные устройства. Датчики являются глазами и ушами системы управления двигателем и их поистине огромное количество.

Так, к примеру, у технологии MED-Motronic (технология непосредственного впрыска), презентованной компанией Bosch в 2000 году, используется их более 13, расположившихся во всех уголках мотора. Среди них такие: датчик давления горючего в контуре низкого давления, положения педали газа, оборотов силового агрегата, температуры масла, воздуха во впускном коллекторе и охлаждающей жидкости, кислородные датчики и множество других.

На основе информации, поступившей от них и в соответствии с программами, заложенными в памяти, электронный блок принимает решение о тех или иных действиях и посылает сигналы на исполнительные устройства.

Если датчики – это глаза и уши, то исполнительные устройства – это руки электронной системы управления двигателем. Подчиняются ей самые разные элементы, например, топливный насос, катушки зажигания, форсунки цилиндров мотора, дроссельная заслонка, термостаты охлаждающей системы, вентилятор и ещё много, много других.

Электронные системы впрыскивания бензина

Применение систем впрыскивания топлива взамен традиционных карбюраторов обеспечивает повышение топливной экономичности и снижение токсичности отработавших газов. Они позволяют в большей степени по сравнению с карбюраторами с электронным управлением оптимизировать процесс смесеобразования. Однако следует отметить, что системы впрыскивания топлива сложнее систем топливоподачи с использованием карбюраторов из-за большего числа подвижных прецизионных механических элементов и электронных устройств и требуют более квалифицированного обслуживания в эксплуатации.

По мере развития систем впрыскивания топлива на автомобили устанавливались механические, электронные и цифровые системы. К настоящему времени структурные схемы систем впрыскивания топлива в основном стабилизировались При распределенном впрыскивании топливо подается в зону впускных клапанов каждого цилиндра группами форсунок без согласования момента впрыскивания с процессами впуска в каждый цилиндр (несогласованное впрыскивание) или каждой форсункой в определенный момент времени, согласованный с открытием соответствующих впускных клапанов цилиндров (согласованное впрыскивание). Системы распределенного впрыскивания топлива позволяют повысить приемистость автомобиля, надежность пуска, ускорить прогрев и увеличить мощность двигателя.

При распределенном впрыскивании топлива появляется возможность применения газодинамического наддува, расширяются возможности в создании различных конструкций впускного трубопровода. Однако у таких систем по сравнению с центральным впрыскиванием больше погрешность дозирования топлива из-за малых цикловых подач.

Идентичность составов горючей смеси по цилиндрам в большей степени зависит от неравномерности дозирования топлива форсунками, чем от конструкции впускной системы. При центральном впрыскивании топливо подается одной форсункой, устанавливаемой на участке до разветвления впускного трубопровода. Существенных изменений в конструкции двигателя нет. Система центрального впрыскивания практически взаимозаменяема с карбюратором и может применяться на уже эксплуатируемых двигателях. При центральном впрыскивании обеспечивается большая точность и стабильность дозирования топлива.

Особенно эффективна в отношении повышения топливной экономичности система распределенного впрыскивания топлива в сочетании с цифровой системой зажигания.

В мировой практике разработкой электронных систем впрыска топлива занимаются многие фирмы, однако наиболее известны в Европе: BOSCH, Siemens, поэтому чаще всего используют их обозначение систем. Общепринятым международным обозначением электронных систем впрыска является Jetronic. В настоящее время в массовом производстве преобладает система под названием LH-Jetronic, которая является системой распределенного впрыска топлива во впускной трубопровод. Применяется как синхронный и асинхронный впрыск топлива. Главной чертой этой системы является термоанемометрический расходомер воздуха, взамен расходомера на основе потенциометра с заслонкой.

ЭСУД что такое, расшифровка

Система управления двигателем модификации с двигателем 2,7 л 1аr-fe toyota venza с 2008 года
ЭСУД – электронная система управления двигателем. Представляет собой комплект электронно-вычислительного оборудования, отвечающего за работу только двигателя или двигателя вместе с другими системами легковой машины. По сути это автомобильный бортовой компьютер.

Виды систем

ЭСУД делятся на два типа, имеющие свои преимущества и недостатки:

  1. В первом случае, который часто называют английской аббревиатурой ECM (Engine Control Module), компьютер управляет только мотором.
  2. Во втором, ECU (Electronic Control Unit), он отвечает за все системы машины: двигатель, подвеску и т. д.

С другой стороны, единый блок – менее безопасный вариант, чем «раздельные зоны ответственности» для разных систем. Его неисправность отразится на работе всех механизмов машины в то время как отдельные блоки работают независимо друг от друга. Например, тормозная система может сработать корректно при неисправности управления или двигателя.

Единый блок управления состоит из следующих элементов:

  • Моторно-трансмиссионный блок.
  • Блок контроля тормозной системы.
  • Центральный блок управления.
  • Синхронизационный блок.
  • Блок контроля кузова.
  • Блок контроля подвески.

Автомобильный бензобак устройство и принцип работы

СИСТЕМЫ ДИСТАНЦИОННОГО АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ ГЛАВНЫМИ ДВИГАТЕЛЯМИ МОРСКИХ СУДОВ

Какие модификации системыFAHMустановлены на судах?


На судах отечественного флота установлены системы FAHM следующих модификаций: FAHM-1-4 для дизелей
«Бурмейстер и Вайн»
,FAHM-2-3 для дизелей
«Зульцер»
,FAHM-3 для дизелей
«Пильстик»
,FAHM-5 для дизелейMAN,FAHM-10 для управления турбинами фирмыAEG,FANM-11 для управления турбинами
. Элементы систем всех модификаций размещают на мостике, в машинном отделении, ЦПУ и непосредственно на двигателе (рис.71).
Для чего предназначена система FAHM-2-2?

СистемаFAHM-2-2 предназначена для дистанционного автоматизированного управления главным судовым двигателем. Пуск и режимы работы двигателя осуществля­ются автоматически в соответст­вии с заданной программой. Единственная функция, которую должен выполнять оператор,— это установка требуемой частоты вращения и направления вращения двигателя с помощью рукоятки машинного телеграфа, установленного на ходовом мостике и в ЦПУ машинного отделения. При необходимости дистанционное автоматизированное управление может быть отключено. Конструкция системы дает возможность ее монтировать как на строящихся, так и на находящихся в эксплуатации судах.

Какие операции выполняются системой FAHM-2-2?

Система обеспечивает выполнение следующих операций:

—дистанционный автоматизированный пуск и остановка главного двигателя согласно заданной программе;

—исполнение команд об изменении частоты вращения и направлении вращении главного двигателя. При этом зону критических частот вращения двигатель проходит по особой программе;

—автоматическая запись реверсографом подаваемых команд;

—контроль работы двигателя телеграфом с ходового мостика;

—контроль работы двигателя телеграфом из ЦПУ. При этом телеграф ходового мостика и репитер команд в ДПУ могут использоваться в качестве обычного машинного телеграфа;

—управлять работой двигателя вручную с поста управления двигателя при отключенной системе ДАУ. При этом регулятор можно устанавливать нажимной кнопкой, телеграф ходового мостика и репитер команд в машинном отделении использовать в качестве обычного машинного телеграфа.

Каковы основные технические характеристики системы?

Система обеспечивает изменение частоты вращения главного двигателя по двум программам:нормальной

Время, сек, в течение которого увеличивается частота вращения, об/мин:

» 80 » 119 . . . . … 100

Время, с, в течение которого снижается частота вращения с 119 до 25 об/мин …. 9,5

Максимальная программа

Время, сек, в течение которого увеличивается частота вращения, об/мин:

» 45 » 119 . . . . . . 70

Время, с, в течение которого снижается частота вращения с 119 до 25 об/мин …. 9,5

Максимальная программа применяется в чрезвычайных (аварийных) случаях. Сброс нагрузки при дистанционном управлении (кроме случаев маневрирования) предпочтительно производить путем постепенного изменения частот вращения. При маневрировании система обеспечивает выполнение последней заданной команды, даже если предыдущая команда не выполнена. Точность дистанционного задания частоты вращения на валу серводвигателя ±0,5 об/мин. Время реверса двигателя с «Малый вперед» на «Малый назад» 8-11 с.

Система обеспечивает сигнализацию о наличии перегрузки двигателя и надежно работает при длительных кренах до 22,5° и дифферентах до 10°.

Как устроена процессорная часть

Система старт-стоп: что это такое, для чего предназначена, принцип работы и отзывы

Основой процессорной части ЭБУ является однокристальная микроЭВМ (микро электронно-вычислительная машина). По сути, это есть тот самый «мозг» электронного блока управления двигателя. По современным меркам микроЭВМ устроен довольно просто. Дело в том, что ключевые его элементы входят в структуру, которая умещается на одном кристалле (чипе). Важным моментом в описании микроЭВМ является его разрядность . Разрядностью называют количество бит информации, оперировать с которыми будет микропроцессор. МикроЭВМ бывают 8-

Вам будет интересно  Типы двигателей

,
16-
и
32-разрядными
. Сами устройства включают в себя:

  • Центральный процесс;
  • Постоянное запоминающее устройство (сокр. ПЗУ);
  • Аналогово-цифровой преобразователь (сокр. АЦП);
  • Оперативное запоминающее устройство (сокр. ОЗУ);
  • Порты ввода и вывода;
  • Генератор тактовой частоты;
  • Таймеры, иначе называемые счетчиками.

Можно провести параллель между современным компьютером и процессорной частью ЭБУ . По факту, в ЭБУ объединяется ряд компонентов, которые в системных блок персональных компьютеров и ноутбуков идут отдельно друг от друга, но объединяются материнской платой

Здесь есть интересные особенности, но их мы рассматривать не будем – автолюбителю важно понимать, что принципиальные схемы современных электронно-вычислительных машин очень похожи друг на друга

Центральный процессор ЭБУ подбирает команды и данные из памяти и производит различные операции над этими данными. Кроме того, он управляет сигналами, проходящими через внутреннюю шину адреса и данных. Постоянное запоминающее устройство – это то место, где хранятся программы и данные. Информация имеет вид констант. Сама же программа записывается в виде машинных кодов микроЭВМ. Данные представляют собой калибровочные таблицы констант , участвующих в процессе расчетов. Данные из таблиц могут быть выбраны и в качестве управляющих параметров. Что интересно, данные в ПЗУ хранятся неограничено долго

. Оперативное запоминающее устройство берет на себя задачу хранения данных, которые могут измениться. Например, промежуточных результатов вычислений или же значений, получаемых от датчиков. Хранить информацию ОЗУ может в течение ограниченного промежутка времени – она стирается после отключения питания.

Тандем центральный процессор – ПЗУ – ОЗУ является ключевым

для ЭБУ. Если говорить по-простому, именно этот тандем выделяет данные и параметры, обсчитывает их, запоминает и отдает команды. К этому тандему также можно отнести так называемые энергонезависимые ОЗУ . Они питаются от аккумуляторной батареи напрямую. Такая память может записать данные и хранить их очень долго. Пока аккумулятор не потеряет накопленную энергию вследствие саморазряда, энергонезависимые ОЗУ продолжат хранить данные.

Важным элементом ЭБУ является аналогово-цифровой преобразователь. Дело в том, что однокристальные микроЭВМ могут работать только с цифровыми сигналам. В АЦП аналоговый сигнал преобразуется в цифровой код

. Порты ввода и вывода, как несложно догадаться из их названия, служат для получения и считывания входных сигналов и передачи выходных сигналов и информации. Таймером же называют устройство, которое служит как для измерения интервалов времени , так и подсчета числа событий . Генератор тактовой частоты призван синхронизировать работы всей системы за счет выработки тактовых импульсов. От точности работы генератора будет зависеть точность измерения интервалов времени.

Системы электронных блоков управления 3 править править код

  • ABS (Anti-lock braking system) – Антиблокировочная система.
  • ACU (Airbag Control Unit) – Блок управления подушками безопасности.
  • Amplifier (Звуковой усилитель).
  • BCM (Body Control Module) – controls door locks, electric windows, courtesy lights, etc. – Контроллер бортовой электроники.
  • Brake Control Module (ABS or ESC) – Модуль управления тормозной системой.
  • CCP (Climate Change and Prediction) – Блок управления климат-контролем.
  • CCU (Convenience Control Unit)
  • CD Changer (Проигрыватель компакт-дисков).
  • Cellular Telephone (сотовый телефон).
  • Chime (Система звукового оповещения).
  • CV RSS (Continuously Variable road sensing suspension) – Подвеска с бесступенчатой изменяемой жесткостью амортизаторов).
  • DCU (Door Control Unit) – Блок управления дверьми.
  • Digital Radio Receiver (Цифровой радиоприемник).
  • DIM (Dashboard Integration Module) – Интегрированный модуль приборной панели.
  • Door Module (s) (Дверные контроллеры).
  • Driver Door Module (Контроллер водительской двери).
  • Driver Information Center – (Система информации водителя).
  • Dual Zone HVAC – Двухзонный климат-контроль.
  • E&C Bus (Мультиплексная шина систем комфорта).
  • ECM (Engine Control Module) – Модуль управления двигателем. (Не путать с электронным блоком управления, общим термином для всех этих устройств.)
  • ELC (Electronic level control) – Пневмоподвеска с электронным контролем уровня положения кузова).
  • EPS (Electric power steering) – Электрический усилитель руля.
  • ESP (Elektronic Stability Program) – Электронный контроль устойчивости.
  • ETACS (Electronic Timing And Control System) – Электронная система полного управления автомобилем
  • Head Up Display (Контроллер верхнего информационного дисплея).
  • HMI (Human Machine Interface) – (Board Computer) – Бортовой компьютер.
  • HPS (Hydraulic power steering) – Гидравлический усилитель руля.
  • HVAC (Heating, Ventilation and Air Conditioning) – Климат-Контроль.
  • IPC (Instrumental Panel Cluster) – Электронная комбинация приборов.
  • Memory Mirror Module (Контролер зеркал с памятью).
  • Memory Seat Module (Контроллер сидений с памятью).
  • Multifuncton Alarm Module – Многофункциональный охранный модуль.
  • Navigation Radio (Радио с навигационной системой).
  • OnStar (Навигационная система).
  • Passenger Door Module (Контроллер двери пассажира).
  • PCM (Powertrain control module) Комбинированный модуль управления, состоящий из блока управления двигателем (ECU) и блока управления коробкой передач (TСМ).
  • Personalization (Система авторизованного доступа).
  • PPS (Passenger Presence System) – Система контроля наличия пассажира.
  • PSCU (Electric Power Steering Control Unit — Generally this will be integrated into the EPS powerpack.
  • Radio (Радиоприемник).
  • RCCP (Rear Climate Change and Prediction) – Задняя панель управления климат-контролем.
  • Rear Aux Climate Module – Дополнительная задняя климатическая установка.
  • Rear Seat Entertainment (Развлекательный центр задней части салона).
  • Remote Function Actuation (Дистанционное управление).
  • RIM (Rear integration module) – Интегрированный модуль задней части салона.
  • RSS (Road Sensing Suspension) – Подвеска с изменяемой жесткостью амортизаторов.
  • SIR (Supplemental Inflatable Restraint) – Дополнительные (Airbags) подушки безопасности.
  • SCU (Seat Control Unit)
  • SCU (Spee
  • Serial Data Gateway (Контроллер мультиплексной шины).
  • TСМ (Transmission control module) – Модуль управления трансмиссией.
  • TCS (Traction control system) – Антипробуксовочная система.
  • TCU (Telephone Control Unit) – Блок управления телефоном.
  • VTD (Vehicle Thief Deterrent) – Охранная сигнализация.

Система управления двигателем

Системой управления двигателем называется электронная система управления, которая обеспечивает работу двух и более систем двигателя. Система является одним из основных электронных компонентов электрооборудования автомобиля.

Генератором развития систем управления двигателем в мире является немецкая фирма Bosch. Технический прогресс в области электроники, жесткие нормы экологической безопасности обусловливают неуклонный рост числа подконтрольных систем двигателя.

Свою историю система управления двигателем ведет от объединенной системы впрыска и зажигания. Современная система управления двигателем объединяет значительно больше систем и устройств. Помимо традиционных систем впрыска и зажигания под управлением электронной системы находятся: топливная система, система впуска, выпускная система, система охлаждения, система рециркуляции отработавших газов, система улавливания паров бензина, вакуумный усилитель тормозов.

Термином «система управления двигателем» обычно называют систему управления бензиновым двигателем. В дизельном двигателе аналогичная система называется система управления дизелем.

Система управления двигателем включает входные датчики, электронный блок управления и исполнительные устройства систем двигателя.

Входные датчики измеряют конкретные параметры работы двигателя и преобразуют их в электрические сигналы. Информация, получаемая от датчиков, является основой управления двигателем. Количество и номенклатура датчиков определяется видом и модификацией системы управления. Например, в системе управления двигателем Motronic-MED применяются следующие входные датчики: давления топлива в контуре низкого давления, давления топлива, частоты вращения коленчатого вала, Холла, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Каждый из датчиков используется в интересах одной или нескольких систем двигателя.

Электронный блок управления двигателем принимает информацию от датчиков и в соответствии с заложенным программным обеспечением формирует управляющие сигналы на исполнительные устройства систем двигателя. В своей работе электронный блок управления взаимодействует с блоками управления автоматической коробкой передач, системой ABS (ESP), электроусилителя руля, подушками безопасности и др.

Исполнительные устройства входят в состав конкретных систем двигателя и обеспечивают их работу. Исполнительными устройствами топливной системы являются электрический топливный насос и перепускной клапан. В системе впрыска управляемыми элементами являются форсунки и клапан регулирования давления. Работа системы впуска управляется с помощью привода дроссельной заслонки и привода впускных заслонок.

Катушки зажигания являются исполнительными устройствами системы зажигания. Система охлаждения современного автомобиля также имеет ряд компонентов, управляемых электроникой: термостат (на некоторых моделях двигателей), реле дополнительного насоса охлаждающей жидкости, блок управления вентилятора радиатора, реле охлаждения двигателя после остановки.

В выпускной системе осуществляется принудительный подогрев кислородных датчиков и датчика оксидов азота, необходимый для их эффективной работы. Исполнительными устройствами системы рециркуляции отработавших газов являются электромагнитный клапан управления подачей вторичного воздуха, а также электродвигатель насоса вторичного воздуха. Управление системой улавливания паров бензина производится с помощью электромагнитного клапан продувки адсорбера.

Принцип работы системы управления двигателем основан на комплексном управлении величиной крутящего момента двигателя. Другими словами, система управления двигателем приводит величину крутящего момента в соответствия с конкретным режимом работы двигателя. Система различает следующие режимы работы двигателя:

  • запуск;
  • прогрев;
  • холостой ход;
  • движение;
  • переключение передач;
  • торможение;
  • работа системы кондиционирования.

Изменение величины крутящего момента производиться двумя способами — путем регулирования наполнения цилиндров воздухом и регулированием угла опережения зажигания.

Введение

На сегодняшний день современным стандартом для отечественного автомобилестроения являетсявыпуск автомобилей, оснащенных электронными системами управления двигателем (ЭСУД).Разработка ЭСУД для автомобилей ВАЗ имеет свою историю, и именно она определяет идеологиюсистемы и способы или алгоритмы управления, заложенные в электронном блоке управления (ЭБУ).На первом этапе сотрудничество АвтоВАЗ с американским концерном GM закончилось установкойна автомобилях 2109, 2108, а в дальнейшем 21103, систем с датчиками и исполнительными элементами, серийно выпускаемыми фирмой GM. Эти автомобили оснащались как системами распределенного впрыска топлива, так и системами центрального впрыска (одноточечный впрыск).К 1997 году российские производственные и научно-производственные предприятия уже освоиливыпуск почти всего ряда элементов системы ЭСУД, аналогичных тем, которые концерн GM предложил для установки на ВАЗовских автомобилях
Особенно важно отметить, что был запущен в производство и основной элемент ЭСУД – блок управления Январь-4 отечественной разработки. Управляющее программное обеспечение для блока управления было создано в России, и на тот момент ничем не уступало по своим функциональным возможностям программам, разработанными мировыми лидерами в этой области.АвтоВАЗ, потратив значительные средства на эти работы, к 1997 г

приступил к выпуску автомобилей с ЭСУД на базе российских комплектующих. Однако, один из самых сложных элементов этой системы – датчик массового расхода воздуха – устанавливался по-прежнему импортный (фирмы GM). Российские разработчики и производители так и не смогли довести этот датчик до приемлемого качества.К этому времени по различным причинам АвтоВАЗ меняет основного партнера по созданию иразвитию ЭСУД. Этим партнером становится фирма BOSCH. ЭСУД фирмы BOSCH идеологически имелряд отличий от систем фирмы GM. Мы отметим некоторые из них:Включение системы в работуВ системе GM питание к основным исполнительным механизмам, датчикам, блоку управления подается с главного реле, непосредственно управляемого с замка зажигания. Блок управления включается в работу и не контролирует подачу питающего напряжения к элементам системы.В ЭСУД BOSCH замок зажигания управляет включением блока управления, а уже тот в свою очередь включает главное реле и контролирует его выходное напряжение.Система зажиганияФункции искрового зажигания в ЭСУД фирмы GM выполняет модуль зажигания, совмещающий всебе и катушки зажигания, и высоковольтные ключи. Сам модуль располагается в подкапотном пространстве. Блок управления обрабатывает сигналы с индукционного датчика коленчатого вала (синхронизация системы), рассчитывает параметр угол опережения зажигания и выдает низковольтовые сигналы для модуля зажигания. В ЭСУД фирмы BOSCH высоковольтные ключи находятся внутри блока, а под капотом расположена только катушка зажигания.Датчик массового расхода воздухаДатчик GM имеет частотный выходной сигнал. Фирма BOSCH использовала датчик с аналоговымвыходом, который требовал стабильного напряжения питания для датчиков.

Система гашения детонацииСистема байпасного канала для холостого хода

  • Недостаток профессиональных знаний о системах ЭСУД (построение, принципы работы, классификация неисправностей, определяющих работу двигателя и автомобиля в целом).
  • Недостаток сведений о комплектации ЭСУД, устанавливаемой на автомобилях, в технической литературе завода-изготовителя.
  • Менталитет российского потребителя, заставляющий разбираться этого самого потребителя в тонкостях работы всех узлов автомобиля и ремонтировать автомобиль своими силами.
  • Отсутствие удобных, необходимых для проверки и ремонта средств диагностики, позволяющих не просто отображать параметры системы и ошибки самодиагностики, но и непосредственно проверять работу узлов системы.

Оглавление | сапа Домашнее фото девушек в нижнем белье продать

Режим многоточечного впрыска топлива для двигателя четырехтактного

На привычном нам четырехцилиндровом моторе три существует основных метода впрыска топлива в Одновременный.

(1) цилиндры впрыск: топливные форсунки всех впрыскивают цилиндров топливо одновременно. Каждая форсунка топливо впрыскивает два раза за один цикл.

(2) группам по Впрыск: в два цилиндра, работающие параллельно, топливо впрыскивается одновременно, например, в цилиндры 1 и 3 четырехцилиндрового после; двигателя того, как коленчатый вал 360 на поворачивается°, одновременный впрыск топлива происходит в каждый 2 и 4. В цилиндры цилиндр топливо впрыскивается однократно за цикл один.

(3) Последовательный впрыск: каждая топливная впрыскивает форсунка топливо в определенной фазе коленчатого каждый. В вала цилиндр топливо впрыскивается однократно за цикл один.

В случае с одновременным впрыском разная по топливно сотаву-воздушная смесь в цилиндрах является неблагоприятным наиболее фактором для работы двигателя. последовательном При впрыске, создание одинаковой газообразной каждом в смеси цилиндре наиболее благоприятно для двигателя работы. Характеристики впрыска по группам находятся характеристиками между двух вышеперечисленных типов.

Вам будет интересно  Автозапуск машины с брелка: инструкция, описание и рекомендации

Какие задачи выполняет ЭСУД

Большое количество компонентов, входящий в состав электронной системы управления, обусловливает и широкое разнообразие выполняемых ей задач. По большому счету, она полностью управляет работой двигателя, оперативно изменяет его параметры и фиксирует его состояние. К наиболее важным функциям ЭСУД можно отнести следующие:

  • расчет оптимального объема топлива и момента его подачи в камеру сгорания;
  • определение момента генерации искры, воспламеняющей ТВС;
  • регулировка угла опережения зажигания;
  • контроль положения коленвала;
  • самодиагностика системы, всех ее подсистем и исполнительных механизмов.

Все элементы ЭСУД работают в комплексе, что позволяет достигать оптимальной производительности мотора. Если в ходе диагностики выявляются какие-либо неисправности, то на экран либо приборную панель выводится соответствующее уведомление. Если обнаруженные нарушения создают угрозу двигателю и автомобилю в целом, то система управления отдает команду на его отключение. Если поломка не такая серьезная, то можно временно продолжать движение – но в любом случае нужно как можно скорее обратиться на автосервис.

Для определения действительной неисправности необходимо использовать специальное диагностическое оборудование. При подключении к соответствующему разъему оно считает информацию, расшифрует код ошибки и предоставит точные сведения о выявленной неполадке.

В этом выражается еще одна важная функция ЭСУД – сокращение затрат времени и денег на ремонтные работы. Работникам СТО будет достаточно только получить код ошибки, после чего можно сразу же приступать к устранению поломки.

Неисправности впускного коллектора

Общие проблемы с впускным коллектором включают в себя:

  • подсос воздуха;
  • утечки охлаждающей жидкости или масла;
  • снижение потока из-за накопления углерода;
  • проблемы с впускными регулирующими заслонками.

В некоторых двигателях впускной коллектор может корродировать или растрескиваться, вызывая утечку вакуума или охлаждающей жидкости. Треснувший коллектор должен быть заменен, если его нельзя безопасно отремонтировать.

Утечки охлаждающей жидкости

В некоторых автомобилях во впускном коллекторе имеются каналы для охлаждающей жидкости, которые могут протекать из-за плохих прокладок или повреждений. Например, эта проблема была довольно распространенной в старых двигателях GM V6.

Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора. Если коллектор поврежден — его необходимо заменить.

Подсос воздуха

Изношенные прокладки впускного коллектора (на фото) часто вызывают утечки вакуума. Это может привести к неровному холостому ходу, остановке, а также к включению индикатора Check Engine. При этом на более высоких оборотах двигатель может работать нормально.

Например, коды неисправностей OBD-II P0171 и P0174 часто вызваны утечками во впускном коллекторе. Если подсос вызван плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок. Посмотрите, например, это видео замене прокладок впускного коллектора на Рено Меган:

Часто источником подсоса воздуха может быть треснувший вакуумный шланг или патрубок, соединяющий впускной коллектор. В этом случае сломанный вакуумный шланг или патрубок необходимо заменить.

Иногда впускной коллектор может деформироваться, вызывая неправильное уплотнение прокладок. Деформированный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота.

Отложения углерода

В некоторых двигателях, например, Volkswagen TDI Diesel, отложения углерода внутри впускного коллектора могут вызвать недостаток мощности, пропуски зажигания, дым и увеличение расхода топлива.

Проблемы с отложением углерода чаще встречаются в двигателях с турбонаддувом. Одним из основных симптомов является отсутствие тяги. Забитый впускной коллектор может потребоваться снять и почистить вручную.

В некоторых случаях замена впускного коллектора может оказаться более разумным решением, чем его очистка. Есть много скрытых областей внутри коллектора, которые не могут быть очищены.

Проблемы с заслонками изменения геометрии впуска

Регулирующие заслонки обычно приводятся в действие электрическими или вакуумными исполнительными механизмами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать.

Вакуумный исполнительный механизм легко проверить с помощью ручного вакуумного насоса. Если вакуумный привод пропускает, его необходимо заменить. Вместо насоса можно использовать медицинский шприц.

Блок управления двигателя (ЭБУ) запускает вакуумные приводы, включая и выключая небольшие электромагнитные клапаны контроля вакуума. Эти соленоиды также часто выходят из строя. Соленоиды тоже легко проверить с помощью ручного вакуумного насоса.

Другой распространенной проблемой является случай, когда клапан изменения геометрии впуска залипает из-за накопления углерода или когда клапан деформирован. В этом случае коллектор необходимо заменить.

Например, проблемы с впускным коллектором (регулирующим клапаном) часто встречаются в некоторых двигателях VW / Audi. Volkswagen продлил гарантию на впускной коллектор для определенных автомобилей Audi / Volkswagen 2008-2011 модельного года с двигателями 2.0 TFSI с кодами двигателей CBFA и CCTA.

Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является общей проблемой. Посмотрите это видео о проверке клапана DISA в BMW:

Выход из строя ЭБУ править править код

Основными симптомами выхода из строя ЭБУ являются отказ в запуске двигателя, постоянная индикация об ошибке в работе двигателя которая не может быть очищена. Выход из строя ЭБУ случается довольно редко и никогда нельзя спрогнозировать точно когда он произойдет. Для выявления и подтверждения выхода из строя ЭБУ производителям и ремонтным предприятиям необходимо выполнить ряд следующих проверок:

  • оценить качество сборки блока
  • Проверить электронику
  • Провести фрактографию
  • Проверить на перегрев
  • проверить на коррозию и разрушение

Выполнение данных условий в испытаниях позволит в будущем предотвратить повреждения и увеличить производительность.

Таблица масс ЭСУД в различных автомобилях

Массой в ЭСУД обычно выступает корпус машины. Если какой-то из контактов с массой теряет надежность, электросхема нарушается, качество работы системы падает. Например, двигатель начинает произвольно менять режим работы, набирая или сбрасывая обороты без участия водителя. Чтобы справиться с такой проблемой, надо знать места заземления ЭСУД.

Модели Точки заземления
Семейство АвтоВАЗ 2108-9 и 13-15 1. Масса ЭСУД берется с двигателя, с болтов, крепящих заглушку с правой стороны головки блока. В контроллерах BOSCH 7.9.7 или Январь 7.2, масса берется со шпильки, крепящей каркас центральной консоли приборной панели к тоннелю пола (внутри центральной консоли, под пепельницей).
Семейство ВАЗ 2110-12, 1,5L. С болтов на левой стороне головки блока.
Семейство ВАЗ 2114, 21124 1,6L. Контроллеры BOSCH 7.9.7 или Январь 7.2. Масса на четыре катушки зажигания с болта М6, масса на ЭСУД – со шпильки на кронштейне крепления ЭБУ, слева. На шпильку – от моторного щита. Здесь возможны проблемы, надо подтянуть постоянно разбалтывающуюся гайку.
Нива с контроллером Bosch MP 7.0. С болтов, крепящих заглушку, на месте распределителя зажигания – трамблера.
Нива с контроллером Bosch М 7.9.7. Масса берется с кузова, со шпилек его крепления. Частая проблема – клемма намного толще, чем нужно для равномерного прижатия корончатой шайбы к кузову.
Шевроле Нива с контроллером Bosch MP 7.0. Масса берется с двигателя, со шпилек М8 в его нижней левой части, под модулем зажигания.
Приора С на крепления ЭБУ (на кронштейне).
Калина Контакт для массы находится справа на двигателе, на кронштейне крепления впускного коллектора.
Модельный ряд 2104-07. Старые контроллеры. Масса берется с болта, притягивающего кронштейн крепления модуля зажигания к мотору.
Газель с двигателем 405, 406 С приварной шпильки на площадке над правым лонжероном, под свесом моторного щита.
УАЗ Патриот с Микас 11 Е2 Контакт от кузова через приварную шпильку в нижней части левого брызговика.

«Январь-7.2», Бош М-7.9.7

Модификация седьмого января зависит от объема двигателя. Производства BOSCH блоки управления монтировались только на те автомобили, которые шли на экспорт (они удовлетворяли экостандарту ЕВРО-3). Полуторалитровые восьмиклапанные моторы оснащались такими ЭБУ:

21114-1411020-80 БОШ-7.9.7,Е-2,1,5литр.,1-ая серийная верс.
21114-1411020-80ч БОШ-7.9.7,Е-2,1,5литр.,тюнинг
21114-1411020-80 БОШ-7.9.7+,Е-2,1,5литр.,
21114-1411020-80 БОШ-7.9.7+,Е-2,1,5литр.,
21114-1411020-30 БОШ-7.9.7,Е-3,1,5литр.,1-ая серийная верс.
21114-1411020-81 ЯНВАРЬ_7.2,Е-2,1,5литр.,1-ая_серийная верс.неудачн.,замена_А203EL36
21114-1411020-81 ЯНВАРЬ_7.2,Е-2,1,5литр.,2-ая_серийная_верс.неудачн.,замена_А203EL36
21114-1411020-81 ЯНВАРЬ_7.2,Е-2,1,5литр.,3-я_серийная_верс
21114-1411020-82 ИТЭЛМА,с датч.кисл.,Е-2,1,5литр,1-я_версия
21114-1411020-82 ИТЭЛМА,с датч.кисл.,Е-2,1,5литр,2-я_версия
21114-1411020-82 ИТЭЛМА,с датч.кисл.,Е-2,1,5литр,3-я_версия
21114-1411020-80ч БОШ_797,без датч.кисл.,Е-2,дин.,1,5литра
21114-1411020-81ч ЯНВАРЬ_7.2,без датч.кисл.,СО,1,5литр
21114-1411020-82ч ИТЭЛМА,без датч.кисл.,СО,1,5литр

На двигатели 1,6 литра:

BOSCH_797,E-2,1.6L,1-я_серия(глюки в ПО)
21114-1411020-30 BOSCH_797,E-2,1.6L,2-я_серия
21114-1411020-30 BOSCH_797+,E-2,1.6L,1-я_серия
21114-1411020-30 BOSCH_797+,E-2,1.6L,2-я_серия
21114-1411020-20 BOSCH_797+,E-3,1.6L,1-я_серия
21114-1411020-10 BOSCH_797,E-3,1.6L,1-я_серия
21114-1411020-40 BOSCH_797,E-2,1.6L
21114-1411020-31 ЯНВАРЬ_7.2,Е-2,1.6L,1-я_серия(неудачная)
21114-1411020-31 ЯНВАРЬ_7.2,Е-2,1.6L,2-я_серия
21114-1411020-31 ЯНВАРЬ_7.2,Е-2,1.6L,3-я_серия
21114-1411020-31 ЯНВАРЬ_7.2+,Е-2,1.6L,1-я_серия,новая_аппарат.верс.
21114-1411020-32 ИТЭЛМА_7.2,Е-2,1.6L,1-я_серия
21114-1411020-32 ИТЭЛМА_7.2,Е-2,1.6L,2-я_серия
21114-1411020-32 ИТЭЛМА_7.2,Е-2,1.6L,3-я_серия
21114-1411020-32 ИТЭЛМА_7.2+,Е-2,1.6L,1-я_серия,новая_аппарат.верс.
21114-1411020-30Ч BOSCH_с датч.кисл.,Е-2,дин,1,6L
21114-1411020-31Ч ЯНВАРЬ_7.2,без датч.кисл.,СО,1.6литр.

Самой новой модификацией является электронный блок управления ЯНВАРЬ-7.3, с его помощью организована система управления восьмиклапанных моторов объемом 1,6 литра, которые были выпущены с 2007 г. Модификации Январь-7.3 могли соответствовать экостандартам ЕВРО-3 и 4, производились заводами АВТЭЛ и ИТЭЛМА.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

1C:Документооборот

1С:Документооборот — программный продукт российской на технологической платформе «1С:Предприятие 8», предназначенный в первую очередь для автоматизации документооборота.

Система обеспечивает автоматизацию полного цикла работы с документами, также позволяет упорядочить взаимодействие между сотрудниками и осуществлять контроль использования рабочего времени. Учёт документов реализован в соответствии с положениями действующей нормативной документации (ГОСТов, требований, инструкций и т. д.) и традиций делопроизводства. Программа обеспечивает многопользовательскую работу как в локальной сети, так и через интернет (в том числе через веб-браузеры). Система отличается большой гибкостью, высокой степенью детализации сведений о хранящихся данных и широким спектром возможностей. Позволяет повысить эффективность управления рабочим временем, стандартизировать процессы, обеспечить полный контроль и сохранность документации и любой иной необходимой информации. функциональность системы постоянно расширяется.

Принцип диагностики датчиковой аппаратуры

Диагностика любого датчика ЭСУД сводится к проверке адекватности преобразования физического параметра в электрический параметр.

Необходимо установить заведомо известное значение параметра на входе датчика и проконтролировать его выходной сигнал при помощи мотортестера или сканера.

Простой пример: датчик абсолютного давления во впускном коллекторе. В качестве эталона можно использовать атмосферное давление, которое будет присутствовать во впускном коллекторе заглушенного двигателя. Проконтролировав отображаемое датчиком в этом состоянии давление при помощи сканера, можно сделать вывод о достоверности его показаний.

Приведенный пример весьма примитивен, он призван лишь продемонстрировать общий принцип диагностики датчиковой аппаратуры. В обучающем курсе «Диагностика датчиковой аппаратуры» методики проверки каждого типа датчиков описаны очень подробно.

Предположим, есть некий датчик, подключенный к ЭБУ, и есть необходимость оценить его работоспособность (см. рисунок). Рассмотрим классическую схему подключения датчиков к блоку.

С блока управления на датчик подается питающее напряжение 5 В и масса. Сигнал с датчика поступает в блок и обрабатывается им.

Датчики систем управления двигателем

Для проверки исправности датчиков применяются два основных диагностических прибора: сканер и мотортестер.

Подключив сканер, диагност получает возможность «увидеть» сигнал датчика «глазами» блока управления. Для того чтобы оценить выходной сигнал датчика при помощи мотортестера, необходимо подключить его щупы к цепи датчика, как показано на рисунке: один к массе, другой к сигнальному проводу.

Работа сканером более проста и удобна, но не следует забывать, что обмен информацией между ЭБУ и сканером происходит отнюдь не мгновенно, и какие-то интересные моменты сигнала можно попросту не обнаружить. Помимо этого, сканер невозможно использовать на достаточно старых автомобилях, примерно до середины девяностых годов, вследствие низкого уровня интеллекта и быстродействия тогдашних блоков управления.

Напротив, мотортестер позволяет оценить сигнал датчика очень качественно и подробно, не пропустив ни малейшей детали, хотя трудоемкость его применения выше, чем у сканера. Обратите внимание на то, что щупы мотортестера правильнее всего подключать непосредственно к разъему датчика. Особенно это касается щупа массы: не следует присоединять его к первой попавшейся точке массы двигателя.

Краткие итоги

Датчик представляет собой преобразователь физического параметра в параметр электрический, пригодный для обработки в ЭБУ. Физическими параметрами можно назвать температуру, давление, концентрацию, пространственное положение, количество воздуха, вибрацию. Электрические параметры, с которыми оперируют датчики, это напряжение, ток, частота. Проверку датчиков можно выполнить двумя приборами: сканером, подключив его к ЭБУ, и мотортестером, подключив его щупы непосредственно к сигнальному и массовому выводам датчика.

Comindware Business Application Platform

Россия. Москва. https://www.comindware.com/ru/platform/

Low-code платформа для управления бизнес-процессами и цифровой трансформации предприятия. В основе Comindware Business Application Platform — управление бизнес-процессами (BPMS), кейсами (ACM), работа с данными и документами, социальное взаимодействие.

Платформа, которая позволяет строить корпоративные приложения под разные потребности бизнеса. Она предоставляет функционал системы управления бизнес-процессами предприятия (BPMS), включая таск менеджер и работу с поручениями, а также возможность управления проектами и кейсами.

Диагностика

Помимо автоматической проверки корректности функционирования ЭСУД, специалисты рекомендуют проводить регулярное диагностирование системы. В среднем обслуживание стоит делать каждые 15 тыс км пробега. Диагностика ЭСУД проводится с помощью специального тестера, подключаемого в специальный разъем. Иногда используется беспроводной адаптер, использующий специальный протокол.

Перед проведением тестов с помощью сканера, надо проверить питание системы и ее отдельных фрагментов. Причиной неисправности может быть поврежденная электропроводка, короткие замыкания, коррозия, различные помехи.

Ручная процедура извлечения кодов («мигающие коды»)

Некоторые ранние модели диагности­ческих систем предусматривали ручное извлечение кодов. Этот метод хорош тем, что не требует сложного оборудования, но, вместе с тем, он работает очень медленно, число кодов в нем ограничено, а процесс извлечения сопряжен с большой вероятностью ошибок. Обычно в таких системах процесс считывания запускается перемыканием определенной пары контактов в диагностическом разъеме.

Затем начинается считывание кодов, которые воспроизводятся вспышками сигнальной лампочки на панели приборов, либо вспышками специального светодиода на корпусе БЭУ. Получаемые таким образом коды носят название «мигающих кодов» (см. рис. «Воспроизведение 2-раэрядного кода неисправности с помощью сигнальной лампочки или светодиода» ). Сосчитав вспышки и обратившись к таблице кодов (такие таблицы приводятся в конце каждой главы), можно определить вид неисправности. Некоторые системы не оснащены сигнальной лампочкой или светодиодом — в этих случаях для считывания кодов можно использовать переносной светодиод или даже просто аналоговый вольтметр.

Источник http://k-a-t.ru/dvs_pitanie/40-datchiki/

Источник https://vmyatynnet.ru/remont-i-servis/sistema-upravleniya-dvigatelem.html

Источник

Источник

Author: mag

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *