Электронная система управления двигателем (ЭСУД), что это такое в автомобиле

Содержание

Электронная система управления двигателем (ЭСУД), что это такое в автомобиле

В этой статье описано устройство ЭСУД – электронной системы управления двигателем внутреннего сгорания, зажигания, питания автомобиля топливом и принципа работы его датчиков.

Диагностика ошибок ЭСУД автомобиля невозможна без знания видов систем зажигания, которые будут подробно рассмотрены ниже. Не останется без внимания и стратегия управления питанием ДВС.

Изучив предложенный материал можно узнать назначение ЭСУД автомобилей при различных условиях эксплуатации ДВС, что позволит продлить срок службы и правильно проводить техническое обслуживание силового агрегата.

Устройство системы зажигания двигателем: виды и принцип работы

Электронная система управления двигателем автомобиля обеспечивает работу всех компонентов силового агрегата, в том числе и работу системы зажигания автомобиля. В системе зажигания бензиновых ДВС топливо-воздушная смесь воспламеняется в нужное время при помощи искры свечи зажигания.

В настоящее время применяются главным образом системы зажигания с индуктивной катушкой зажигания с распределителем. Принцип работы системы зажигания ДВС состоит в том, что искра на запальной свече появляется за счет прерывания тока катушки к определенному углу коленчатого вала.

Процессы, которые приводят к воспламенению смеси, управляются в современных системах электроникой. У представленных в обзоре систем зажигания одна общая особенность в том, что искра образуется в результате исчезновения магнитного поля в первичной обмотке катушки зажигания.

Разница в том, как выключается первичный ток и как происходит искрообразование, кроме того, имеется различие в распределении запальной искры, а также в регулировке момента зажигания электронной системой управления питанием двигателя.

Система зажигания с контактным управлением

Принцип работы контактной системы зажигания автомобиля заключается в управлении через контакты. Кулачок прерывателя открывает и замыкает в соответствии с числом оборотов контакт между АКБ и катушкой зажигания. Исчезающее магнитное поле способствует появлению запальной искры.

При работе контактной системы зажигания, регулировка момента воспламенения происходит за счет центробежных грузиков в распределителе зажигания и вакуумного регулятора.

Находящийся в распределителе зажигания контакт прерывателя необходимо заменять через определенный пробег.

Система зажигания с контактно-транзисторным управлением

Принцип работы системы зажигания с контактно-транзисторным управлением представляет собой модернизированную версию традиционной системы зажигания – основные детали идентичны деталям традиционной системы зажигания.

Изменение касается только встроенного транзистора. Дополнительно встроенный транзистор служит для коммутирования первичного тока.

Контакты прерывателя разгружаются, так как они коммутируют только управляющий ток транзистора.

Системы зажигания

Бесконтактная транзисторная система зажигания на основе датчика Холла

Устройство системы управления зажиганием двигателя постоянно модернизировались и ухудшались с целью улучшения параметров экономичности, токсичности, облегчения обслуживания и детонационной стойкости.

Вместо контактной группы был установлен датчик Холла, который является бесконтактным выключателем, он установлен в распределителе зажигания.

По его прямоугольному сигналу главный блок управления ДВС определяет частоту вращения и положение коленчатого вала, на основании этого он рассчитывает оптимальный момент зажигания и подает управляющие сигналы на блок управления зажиганием, который коммутирует цепь первичного тока и тем самым запускает зажигание.

Полностью электронные системы зажигания

Распределение напряжения происходит больше не механическим путем, а чисто электронным путем в блоке управления зажигания. В полностью электронных системах находятся две катушки первичной обмотки и две катушки вторичной обмотки в индуктивной катушке зажигания с распределителем (зажигание со стационарным распределителем вместо вращающегося).

Каждая катушка вторичной обмотки (у четырехцилиндрового ДВС) соединена с двумя свечами зажигания, это означает, что блок управления посылает управляющие сигналы всегда одновременно на две свечи.

Расположение выбрано с тем расчетом, чтобы запальная свеча второй свечи попадала в такт выпуска неработающего цилиндра. Полностью электронная система зажигания является на сегодняшний день самой распространённой системой, где обслуживание сведено к минимуму.

Индивидуальные катушки зажигания

Индивидуальные катушки зажигания монтируются на свече и им поэтому не нужен провод высокого напряжения от катушки до свечи зажигания.

Катушка зажигания

Система с индивидуальными катушками предусматривает подачу только одного управляющего сигнала индивидуально на каждый цилиндр за рабочий цикл – это современный вид системы зажигания.

Управление катушками зажигания выполняется блоком управления зажиганием или блоком управления силовым агрегатом.

Регулировка опережения зажигания

Угол опережения зажигания,– это угол поворота коленчатого вала между моментом зажигания и ВМТ. Если зажигание происходит перед ВМТ, то его называют ранним. Если зажигание происходит после ВМТ, то его называют поздним. Для полного сгорания топливо-воздушной смеси требуется при постоянном наполнении по всему диапазону частот вращения около двух миллисекунд.

Угол зажигания

При повышении частоты вращения поршень проходит тот же путь (ход) за меньшее время. По этой причине при увеличении частоты вращения двигателя необходимо сдвигать момент зажигания в раннюю сторону. Величина угла зажигания оказывает существенное влияние на работу двигателя.

Влияет на развиваемый крутящий момент, токсичность отработавших газов, расход топлива и т. д. Два важных параметра, которые влияют на определение угла опережения зажигания: частота вращения и нагрузка на двигатель. Длительность сгорания топливо-воздушной смеси является постоянной величиной, которая зависит от соотношения топлива и воздуха, а не от частоты вращения.

Чем выше частота вращения, тем раньше должен быть момент зажигания для обеспечения максимального давления в камере сгорания непосредственно за ВМТ поршня и чем выше нагрузка на двигатель, иными словами потребность в крутящем моменте, тем богаче должна быть топливо=воздушная смесь, тем дольше продолжительность сгорания, и тем раньше требуется момент зажигания.

Нагрузка на двигатель определяется системой управления двигателя на основании давления в впускном коллекторе и положении дроссельной заслонки. Эти два фактора нагрузки и число оборотов двигателя позволяют определить какой момент зажигания необходим. Он может варьироваться в зависимости от условий эксплуатации двигателя, например: при холодном пуске.

Момент зажигания оказывает основное влияние на давление в камере сгорания и тем самым на увеличение отдаваемой мощности. Давление взрыва подобного сгорания топливо-воздушной смеси должно достигать своего максимума тогда, когда поршень только что миновал свою ВМТ.

При раннем зажигании наблюдается значительное повышение давления к камере сгорания, которое приводит к увеличению мощности. Сгорание начинается еще при недостаточном сжатии. Как результат – сгорание, сопровождается рывками и колебаниями давления после ВМТ.

Сильный нагар в камере сгорания увеличивает степень сжатия в цилиндре, что может вызывать детонацию при малых нагрузках на силовой агрегат.

Эти явления называются сильной детонацией или детонационным шумом (звонкий стук). Для приближения момента зажигания непосредственно к границе детонации на блоке цилиндров устанавливается датчик детонации, который передает информацию о сгорании, сопровождающимся рывками, на блок управления силового агрегата (PCM).

Зажигание, которое расположено совсем не далеко от ВМТ, способно отдать мощность лишь при слабом сжатии топливо-воздушной смеси. Позднее зажигание приводит к снижению давления в камере сгорания и потере мощности.

Традиционная система зажигания, работающая с центробежной силой и вакуумным регулятором опережения зажигания, способна лишь в ограниченном объеме среагировать на изменение числа оборотов и нагрузки. Электронные системы зажигания определяют угол опережения зажигания на основе запрограммированных регулировочных характеристик.

Индивидуальные для каждого ДВС данные определяются путем проведения серии тестов. При этом целенаправленно оказывается влияние на снижение токсичности ОГ, мощность и расход топлива двигателя. Регулировочные характеристики зажигания у полностью электронных систем сохранены в памяти блока управления силового агрегата.

Сбои в процессе сгорания

Детонация в бензиновом ДВС наблюдается при самовоспламенении топливо-воздушной смеси. Самовоспламенение приводит к молниеносному, взрывному сгоранию, причем сферические фронты пламени перемещаются по направлению друг к другу.

Горение происходит с очень высокой скоростью, что ведет к значительному повышению давления в камере сгорания. При детонации на детали кривошипно-шатунного механизма воздействуют очень высокие механические и термические нагрузки, одновременно наблюдается падение мощности.

Наряду с ненадлежащим топливом детонацию могут вызвать следующие причины: слишком раннее зажигание, неравномерное распределение смеси в цилиндре, плохой отвод тепла из-за образования масляного нагара или неисправности системы охлаждения, слишком высокая степень сжатия, например, из-за слишком тонкой прокладки головки блока цилиндров.

Другие причины детонации: калильное зажигание. Калильное зажигание – это непроизвольное воспламенение смеси до возникновения запальной искры. Это воспламенение возникает как результат соприкосновения с сильно раскаленным местом в камере сгорания. Этим раскаленным местом может выступающая кромка, электрод свечи или выпускной клапан.

Антидетонационное регулирование

У двигателей с высокой степенью сжатия максимальный КПД достигается на режиме, который граничит с детонацией. По этой причине антидетонационное регулирование работы каждого цилиндра двигателя происходит индивидуально, каждый цилиндр работает в режиме, который граничит с детонацией.

Для этого на двигатель устанавливается один или несколько датчиков детонации, улавливающих механические колебания двигателя и преобразующие их в передаваемый блоку управления силового агрегата электрическое напряжение сигнала.

При превышении напряжения сигнала от какого-либо цилиндра электронный блок управления силового агрегата (ЭБУ)(PCM) сдвигает в позднюю сторону угол опережения зажигания в этом цилиндре на некоторую величину.

Если после этого детонация больше не регистрируется, то зажигание плавно начинает сдвигаться в раннюю сторону. Такой алгоритм делает возможным работу двигателя на границе детонации с максимальным КПД.

Рециркуляция отработавших газов

Для уменьшения токсичности отработавших газов, содержащих оксиды азота, необходимо снизить температуру в камере сгорания, для этого часть отработавших газов возвращают в систему впуска, уменьшая тем самым содержание кислорода в поступающем воздухе.

Отработанные газы отводятся во впускной коллектор через трубопровод и клапан регулировки рециркуляции ОГ. Такая рециркуляция называется внешней. Внутренняя рециркуляция ОГ у всех двигателей происходит за счет перекрытия фаз открытия клапанов системы газораспределения.

У двигателей с регулируемыми фазами газораспределения, управление внутренней рециркуляцией выполняется блоком управления двигателем (PCM) за счет изменения фаз. Это позволило отказаться от применения дорогостоящей системы внешней рециркуляции, упростив тем самым конструкцию ДВС.

Система внешней рециркуляции ОГ применяется на дизельных и некоторых бензиновых ДВС, преимущественно с непосредственным впрыском топлива. Топливо-воздушная смесь, находящаяся в камере сгорания после закрытия впускных клапанов, состоит из свежего заряда и остаточных газов. Фазы газораспределения оказывают решающее влияние на состав топливо-воздушной смеси. Поступающий свежий заряд состоит:

  • в бензиновых ДВС с впрыском во впускной коллектор из приточного воздуха и поступающего вместе с ним топлива;
  • в дизельных и бензиновых ДВС с непосредственным впрыском из приточного воздуха.

Остаточные газы

Остаточными называют ту часть заполняющих цилиндр газов, которая уже принимала участие в процессе сгорания. Остаточные газы можно подразделить: внутренние остаточные газы и внешние остаточные газы.

Внутренние остаточные газы, это отработанные газы, оставшиеся в ВМТ цилиндра после сгорания или вернувшиеся во время перекрытия клапанов из выпускного канала в камеру сгорания. Количеством внутренних остаточных газов можно управлять в основном при газообмене, изменяя фазы газораспределения (время открытия клапанов и их перекрытие).

Большая продолжительность перекрытия клапанов впуска и выпуска (раннее открытие впускного клапана) приводит к повышению объема внутренней рециркуляции ОГ и может поэтому способствовать снижению объема оксидов азота.

Перекрытие клапанов

Ввиду вытеснения имеющегося в камере сгорания свежего заряда заброшенными обратно отработанными газами раннее открытие впускного клапана приводит и к снижению максимального крутящего момента.

Слишком высокий обратный заброс отработавших газов на холостом ходу может вызвать пропуски воспламенения, которые приводят к повышению выброса углеводородов (HC). Благодаря переменным фазам газораспределения можно здесь достичь оптимальных показателей.

Внешние остаточные газы, это газы, отобранные на рециркуляцию и поступившие во впускной коллектор и попадающие назад в цилиндры. Количество внешних остаточных газов регулируется изменением проходного сечения клапана рециркуляции отработавших газов.

Благодаря электронной системе управления двигателем всегда обеспечивается оптимальное количество отработавших газов, отбираемых на рециркуляцию.

Существует правило: чем выше отобранное на рециркуляцию количество отработавших газов, тем ниже будет являться доля оксидов азота NOx. Слишком высокий обратный заброс отработавших газов приводит, однако, ввиду недостатка кислорода, к неполному сгоранию и соответственно к повышению содержания углеводородов (HC) в отработавших газах.

В состав остаточных газов входят инертные газы (составные части заряда в камере сгорания, которые ведут себя инертно, т.е. которые больше не участвуют в процессе сгорания) и несгоревшая часть воздушной смеси (при работе на обедненной смеси).

Количество инертных газов, которые непосредственно не участвуют в горении, влияет, однако, на процессы воспламенения и горения. При уменьшении доли приточного воздуха в результате рециркуляции ОГ (снижение доли кислорода в камере сгорания), снижается и доля оксидов азота NOx.

Электронная система управления двигателем

Электронная система управления двигателя подразделяется на следующие системные блоки:

  1. Датчики и задающие устройства.
  2. Блок управления двигателя.
  3. Исполнительные устройства.

ЭСУД автомобилей, базирующаяся на интенсивно прогрессирующих в последние годы компьютерных технологиях, в состоянии выполнить названные выше требования.

В противоположность старым механическим системам при использовании электронной системы управления водитель оказывает на подачу топлива только косвенное влияние.

Для получения как можно точной информации о рабочем состоянии двигателя производится замер по многим физическим параметрам, например:

  • расход воздуха (MAF);
  • частота оборотов двигателя / положение коленвала (CKP);
  • температура охлаждающей жидкости (ECT).

Для этого используются датчики ЭСУД, преобразующие физические параметры в электрические, например: в последовательность импульсов напряжения, которые снимаются с датчика CKP. Количество импульсов напряжения является мерой физической величины.

То есть с каждым параметром числа оборотов соотносится определенное количество импульсов напряжения: чем больше импульсов напряжения за единицу времени, тем выше частота оборотов двигателя.

Заданные параметры, задаваемые далее водителем, измеряются таким же образом так называемыми задающими устройствами. Пример задающего устройства: датчик положения педали акселератора.

Блок управления (котроллер ДВС) представляет собой основной элемент системы ЭСУД. Он получает электрические сигналы датчиков и задающих устройств, анализирует их и рассчитывает на их основе управляющие сигналы для исполнительных устройств ЭСУД.

Управляющая программа (прошивка ПО) записана в память блока управления. Исполнение программы берет на себя микропроцессор. Микропроцессор работает только с цифровыми сигналами, поэтому в контроллер управления интегрирован аналогово-цифровой преобразователь, который преобразует аналоговые сигналы в цифровые.

На основании входных данных и записанных в память многопараметрических зависимостей микропроцессор рассчитывает данные для формирования выходных сигналов. Исполнительные устройства преобразуют выходные сигналы блока управления в механические параметры. Исполнительными устройствами могут быть:

  • электромагнитные клапаны топливных форсунок,
  • электропневматические преобразователи давления (например, электромагнитный клапан изменения геометрии турбины);
  • электромагнитный клапан EGR;
  • электрический клапан EGR.

Стратегия управления двигателем

Стратегия – это планомерные действия для достижения цели с привлечением внешних факторов воздействия.

Система управления двигателем – это компьютерная программа, которая выполняется микропроцессором блока PCM. Стратегии сохраняются в ПЗУ (постоянное запоминающее устройство) блока PCM. Ниже показана структурная схема прошивки программы ЭСУД, заложенная в модуле управления двигателем автомобиля.

Схема эсуд

Стратегия (часть программы управления), применяемая на автомобилях, во всех системах управления двигателем разделена на два сегмента: управление ДВС. и самодиагностика. Сегмент управления ДВС разделен на функции:

  1. Запуск (проворачивание коленчатого вала).
  2. Холостой ход.
  3. Частичная нагрузка.
  4. Сброс газа.
  5. Сброс газа с выключением тяги.
  6. Полная нагрузка.

Важнейшими компонентами стратегий у систем управления двигателем внутреннего сгорания являются:

  1. Вычисление массового расхода воздуха.
  2. Расчет угла опережения зажигания.
  3. Антидетонационное регулирование.
  4. Адаптация количества впрыскиваемого топлива.
  5. Управление системой контроля паров топлива.
  6. Управление генератором (система Smart Charge).
  7. Управления подачей воздуха в режиме холостого хода.
  8. Регулировка положения распределительного вала.
  9. Управление давлением наддува.

Программа регулирования сдвига фаз газораспределения включает в себя калибровки. Под калибровкой понимают данные, с которыми стратегия работает, это означает, через калибровку стратегия адаптируется к условиям применения соответствующего типа ДВС.

Вам будет интересно  Бензиновый и дизельный двигатель. Что лучше?

Данные калибровки сохраняются в FEEPROM (электрически-стираемое flash-программируемое постоянное запоминающее устройство) блока PCM. Меры калибровки и их этапы развития учитывают наряду с типом двигателя также соответствующую версию автомобиля.

Если, например, имеется только одна стратегия управления двигателем, инженерами калибровки все-равно могут быть предприняты различные калибровки для этой одной стратегии. Основа стратегии остается при этом без изменений.

Калибровка автомобиля или системы выполняется поэтапно, главное – чтобы достичь наиболее оптимальных ходовых качеств (мощность, расход топлива, параметры отработавших газов и т.д.). Адаптация калибровки может также осуществляться на основании данных клиентов или станций технического обслуживания.

Расчет угла отклонения регулируемого газораспределения

Задача распределительного вала заключается в том, чтобы в правильный момент времени и правильной последовательности задействовать клапаны и, таким образом, управлять газообменом.

Система изменения фаз газораспределения позволяет сдвигать фазы газораспределения всех клапанов, задействуемых соответствующим распределительным валом, в едином направлении.

Система изменения фаз газораспределения в зависимости от требований может быть установлена на впускном распределительном вале, на выпускном распределительном вале или на обоих распределительных валах. Изменение фаз газораспределения впускного распределительного вала дает следующие преимущества:

  • увеличенный крутящий момент, развиваемый двигателем, и более благоприятная характеристика крутящего момента;
  • снижение расхода топлива.

Изменение фаз газораспределения выпускного распределительного вала делает возможным более длительное перекрытие клапанов. За счет этого можно добиться целенаправленного повторного всасывания отработавших газов, что позволяет заменить сложную и дорогую систему рециркуляции отработавших газов, которая в противном случае была бы необходима для достижения оптимальных параметров токсичности.

Чтобы объединить преимущество обеих систем, применяются два работающих независимо друг от друга механизма регулируемого газораспределения. Это позволяет блоку PCM регулировать сдвиг фаз впуска и выпуска постоянно и независимо друг от друга путем относительного поворота распределительных валов.

Относительный поворот распределительного вала регулируется по заданной программе в зависимости, в основном, от нагрузки двигателя и частоты вращения коленчатого вала. Постоянное регулирование положения распределительных валов обеспечивается за счет соленоидов управления подачи масла системы газораспределения с изменяемыми фазами, блоков управления VCT и двух датчиков CMP.

Вычисление массового расхода воздуха с помощью датчика MAF

Датчик MAF измеряет массу поступающего в цилиндры воздуха. Значение массового расхода воздуха, определенное стратегией PCM, используется для расчета необходимого объема топлива и нагрузки двигателя.

Этот расчет очень важен, поскольку он является и основой для других системных расчетов ЭСУД, например, дозирования топлива, управления зажиганием и т. д. При стабильной работе ДВС, т. е. при неизменном положении дроссельной заслонки и неизменной частоте вращения коленвала, измеренная датчиком MAF воздушная масса имеет такие же характеристики, что и воздух, поступающий в цилиндры.

Массовый расход

При равномерных движениях дроссельной заслонки количество протекающей через датчик MAF воздушной массы результирует из функции положения дроссельной заслонки и давления во впускном коллекторе.

Во время резкого ускорения внезапно увеличившийся массовый расход воздуха во впускном коллекторе ведет к росту давления за дроссельной заслонкой (эффект наполнения впускного коллектора). Этот эффект обуславливает увеличение массового расхода воздуха на датчике MAF.

Измеренное датчиком MAF увеличение массового расхода воздуха однако больше, чем фактически имеющаяся в цилиндре масса воздуха. Это и есть состояние воздушной массы во впускном коллекторе перед цилиндром, которое должно быть учтено стратегией и требует аккуратного обращения при расчетах. Если бы этот параметр не учитывался, количество топлива, впрыскиваемого при резком ускорении, было бы слишком большим.

Эффект опорожнения впускного коллектора

Схожий эффект, однако с обратным смыслом, возникает при внезапном замедлении. Измеренная датчиком MAF воздушная масса в данной ситуации очень быстро уменьшается, однако давление во впускном коллекторе за дроссельной заслонкой и, соответственно, имеющаяся воздушная масса во впускном коллекторе уменьшаются медленнее. В этом случае говорят о так называемом эффекте опорожнения впускного коллектора.

Впускной коллектор

Если такие эффекты не компенсируются стратегией, при наполнении впускного коллектора («эффект наполнения») это может привести к чрезмерным отклонениям в топливо-воздушной смеси при внезапном перемещении дроссельной заслонки. Поэтому блок PCM рассчитывает коэффициент наполнения из соотношения давления во впускном коллекторе и нагнетаемого воздуха.

Этот коэффициент наполнения используется для точного вычисления потока нагнетаемого воздуха к цилиндру (информация об этом получается из сигнала MAF). В зависимости от системы управления ДВС и предъявляемых требований наряду с датчиком MAF используется также датчик MAP, который находится на впускном коллекторе. С его помощью состояние воздушной массы во впускном канале перед цилиндром может быть рассчитано еще точнее.

Расчет воздушной массы с помощью датчика MAP

Базирующаяся на абсолютном давлении во впускном коллекторе стратегия расчета воздушной массы (именуемая также Speed Density) является еще одним методом определения воздушной массы.

Объемный расход

Для этого на некоторых ДВС вместо датчика MAF используется датчик MAPT. Как и при вычислении воздушной массы на основании сигналов датчика MAF, здесь также устанавливаются значения, определенные стратегией PCM, и используются для расчета необходимого объема топлива и нагрузки двигателя.

При расчете воздушной массы блок PCM вычисляет воздушную массу, подаваемую в цилиндры за рабочий такт, на основании данных MAP, IAT, частоты вращения коленвала и рассчитанного значения степени наполнения.

Большое значение имеет также барометрическое давление, поскольку с увеличением географической высоты плотность воздуха падает. Барометрическое давление, таким образом, влияет на расчет воздушного потока и, соответственно, на следующие функции:

  1. Дозирование топлива.
  2. Управления подачей воздуха в режиме холостого хода.
  3. Смещение момента зажигания.
  4. Точки переключения сцепления блокировки гидротрансформатора.
  5. Регулирования оборотов холостого хода.
  6. Корректировка воздушной массы при полной нагрузке.
  7. Регулирование давления наддува (двигатели с турбокомпрессором, работающем на ОГ).

Определение барометрического давления выполняется различным образом в зависимости от установленной системы. В некоторых системах в блок PCM встроен датчик BARO. В других системах измерение осуществляется с помощью датчика MAP.

Барометрическое давление измеряется непосредственно после включения зажигания (мотор еще выключен) датчиком MAP. Блок PCM сохраняет значение и применяет его тех пор, пока снова не появятся условия для пригодного измерения, например: дроссельная заслонка в положении полной нагрузки или повторное включение зажигания.

Дозирование топлива

Сгорание топливо-воздушной смеси в цилиндре – это один из многих процессов, которые влияют на мощность ДВС, коэффициент полезного действия и токсичность отработавших газов, а также управляют этими параметрами. Поэтому крайне важно приготовление смеси из всасываемого воздуха и впрыскиваемого топлива.

Принцип сжигания обедненной смеси сегодня еще не проложил себе дорогу, поскольку выбросы вредных веществ не могут быть уменьшены в той же мере, что и при использовании каталитического нейтрализатора с лямбда-регулированием. Кроме того, выбросы NOX при высокой частоте вращения чрезвычайно высоки вследствие избытка воздуха.

Стратегия PCM поэтому использует лямбда-регулируемый TWC для снижения выброса вредных веществ. Функция определения дозирования топлива (и, таким образом, состава топливо-воздушной смеси) осуществляется либо в разомкнутом, либо в замкнутом контуре регулирования.

Замкнутый и разомкнутый контур регулирования

В замкнутом контуре регулирования лямбда-регулируемый тип впрыска топлива обеспечивает оптимальное преобразование вредных веществ в каталитическом нейтрализаторе.

В разомкнутом контуре регулирования имеет место управляемый впрыск топлива. Это значит, что в этом состоянии лямбда-регулирование отсутствует.

В следующих рабочих условиях работа двигателя при разомкнутом контуре регулирования является обязательной: дроссельная заслонка полностью открыта; период прогрева.

Расчет и адаптация впрыскиваемого количества топлива

Длина сигнала впрыска управления подачи топлива рассчитывается из следующих величин:

  1. Датчик давления в топливной рампе.
  2. Сигналы кислородных датчиков (используются только тогда, когда лямбда-регулирование находится в замкнутом контуре регулирования).
  3. Значение воздушной массы от датчика MAF или MAPT.
  4. Частота вращения коленчатого вала.
  5. Нагрузка двигателя.

На протяжении всего срока службы автомобиля, двигатель и различные компоненты системы управления испытывают обычный износ. Этот износ ведет к отклонениям от первоначально запрограммированных параметров для расчета воздушно-топливной смеси.

Посредством адаптации топлива эти отклонения могут быть компенсированы в определенных пределах. При этом блок PCM распознает отклонения от первоначально запрограммированных параметров, образует затем постоянный поправочный коэффициент и сохраняет новые данные в таблице адаптации.

При этом говорят о долговременной адаптации топлива. В блоке PCM находятся таблицы адаптации для всех условий эксплуатации двигателя. За счет адаптации топлива в течение всего срока службы двигателя обеспечивается оптимальная воздушно-топливная смесь.

Расчет угла опережения зажигания

Назначение правильно функционирующей системы зажигания заключается в том, чтобы воспламенять воздушно-топливную смесь в правильный момент времени в соответствии с преобладающими условиями.

От момента воспламенения воздушно-топливной смеси до ее полного сгорания в среднем должно проходить около 2 мс. Для определения правильного момента зажигания используются следующие параметры:

  1. Частота вращения коленчатого вала.
  2. Нагрузка двигателя,
  3. Воздушная масса и/или давление во впускном коллекторе.
  4. Впрыснутое количество топлива.
  5. Температура охлаждающей жидкости.
  6. Температура всасываемого воздуха.
  7. Значение лямбда зонда.
  8. Количество рециркулируемых отработавших газов.
  9. Частота оборотов холостого хода.

Дополнительные параметры для выбора угла зажигания: антидетонационные свойства топлива и степень сжатия.

Когда несгоревшая воздушно-топливная смесь в цилиндре разбавляется посредством обеднения или при использовании системы EGR, возрастают время распространения фронта пламени и колебания, возникающие в процессе сгорания от такта к такту. Чтобы компенсировать данное обстоятельство, момент зажигания смещается в сторону опережения.

За счет соответствующей калибровки системы управления двигателем учитываются все описанные расчеты угла опережения, так что для каждого режима работы или каждой дорожной ситуации предусмотрен соответствующий правильный угол опережения зажигания.

Наивысший приоритет при этом имеет максимально высокий КПД при низком расходе топлива. Калибровка зажигания всегда выполняется для определенного целевого двигателя на определенном варианте модели.

Антидетонационное регулирование

Если скорость распространения пламени в камере сгорания становится сопоставимой со скоростью звука, то этом случае имеет место детонационное сгорание. Детонационный эффект при низкой частоте вращения коленвала отчетливо слышен. При высоких частотах вращения он заглушается шумами двигателя, но при этом может привести к серьезным повреждениям силового агрегата.

Контроль детонации

Воздействия детонации зависят от интенсивности и продолжительности, если граница детонации пересекается лишь кратковременно, то это незначительно или вообще никак не влияет на мощность двигателя и характеристики его работы. Сильная детонация, напротив, может привести к повреждению поршней, головки цилиндров и прокладки головки цилиндров.

Склонность к детонации зависит от формы камеры сгорания, свойств топлива и температуры смеси с высокой степенью сжатия в конце сгорания. Эта склонность к детонации может быть уменьшена за счет изменения преобладающих в камере сгорания параметров (например, уменьшение температуры всасываемого воздуха и смещение угла зажигания в сторону запаздывания).

При этом угол опережения зажигания изменяется шагами 0,25° приблизительно каждые 0,2 секунды. Регулировка угла опережения зажигания осуществляется до устранения детонации. Если система регистрирует однократную детонацию (определяется граница детонации), осуществляется быстрая регулировка. С помощью такого детонационного регулирования достигается оптимальная мощность двигателя, что в конечном счете позитивно влияет на расход топлива.

Система запуска (Smart Starting)

Схема запуска

Особенности системы запуска (Smart Starting): если водитель не отпускает ключ сразу же после запуска двигателя, блок PCM прерывает подачу сигнала к тяговому реле и, таким образом, отключает электродвигатель стартера.

Для контроля процесса запуска используется сигнал датчика CKP. Преимущества по сравнению с обычной системой запуска: процедура запуска выполняется быстрее и в щадящем для стартера режиме.

Последствия в случае неисправности: автомобиль нельзя запустить. Систему можно проверить с помощью мультиметра, руководствуясь схемой электрических соединений.

Управление мощностью ДВС

Управление мощностью

При электронном управлении мощностью двигателя блок PCM управляет дроссельной заслонкой.

Основной величиной для дроссельной заслонки является положение датчика APP. Кроме того, блок PCM учитывает различные входные сигналы датчиков и выполняет соответствующие корректировки.

Блок PCM получает от датчика APP информацию о требуемой мощности ДВС. Он рассчитывает из устанавливаемой мощности двигателя требуемую воздушную массу и отправляет соответствующий управляющий сигнал в электронный модуль дроссельной заслонки.

Электронная заслонка

Блок управления в модуле дроссельной заслонки управляет затем сервоприводом в соответствии с требуемым проходным сечением заслонки.

Датчик TP поставляет данные о текущем положении дроссельной заслонки и обеспечивает, тем самым, точное поддержание требуемого положения дроссельной заслонки.

Дополнительные требования мощности ДВС результируют из соответствующих имеющихся условий эксплуатации, например: включение потребителей; уменьшение крутящего момента при переключении передач; активация устройства регулирования скорости.

В соответствии с этими требованиями блок PCM корректирует положение дроссельной заслонки, вне зависимости от сигнала датчика APP.

Управление генератором (система Smart Charge)

Выходное напряжение обычного генератора задается внутренним регулятором напряжения, который установлен на постоянное (номинальное) значение напряжения. Генератор с системой «Smart Charge» хотя и сохраняет за собой функции регулятора напряжения, но заданное значение напряжения вычисляется в блоке PCM.

Управление генератором

  1. Реле работы двигателя.
  2. Потребители.
  3. Выход генератора.
  4. Вход генератора.
  5. Контрольная лампа системы зарядки на щитке приборов.
  6. Сигнал температуры от датчика MAFT или MAPT.
  7. Электронный модуль дроссельной заслонки.

Система Smart Charge обходится без дополнительных элементов, имеет функцию самодиагностики в блоке PCM и может быть продиагностирована с помощью IDS. Кроме того, при слишком высокой нагрузке генератора блок PCM повышает обороты холостого хода, чтобы увеличить мощность генератора.

Чтобы определить уровень нагрузки генератора, блок PCM через сигнальный провод выхода генератора получает сигнал от вращающейся обмотки возбуждения генератора. Блок PCM обрабатывает сигнал, чтобы компенсировать возможное падение частоты вращения в режиме холостого хода.

Это обеспечивается за счет изменения угла зажигания и скважности импульсов для электронного модуля дроссельной заслонки. Частота и скважность сигналов от выхода генератора изменяются. Диапазон частот сигнала напряжения охватывает от 100 Гц до 200 Гц, а скважность должна составлять от 9% до 97%.

  • 9% = низкий ток зарядки
  • 97% = высокий ток зарядки = повышение частоты оборотов в режиме холостого хода

Кроме того, через этот сигнальный провод осуществляется также контроль выхода генератора, чтобы информировать блок PCM о возможных неисправностях. Это возможно, например, если скважность лежит вне пределов диапазона 9-97% или если генератор не получил действительный сигнал напряжения.

Если на вход блока PCM (Vbatt) подается слишком низкий сигнал напряжения, это означает, что напряжение тока зарядки слишком низкое. Генератор должен производить больше энергии, чтобы при поддержании уравновешенного зарядного баланса аккумулятор достаточно хорошо заряжался.

Через сигнальный провод, идущий к входу генератора, регулируется напряжение генератора в зависимости от входных сигналов блока PCM (например, слишком низкое напряжение, Vbatt). Для вычисления температуры электролита аккумулятора блок PCM регистрирует мгновенное значение температуры всасываемого воздуха.

Это значение сравнивается со значением температуры всасываемого воздуха, сохраненным при последнем выключении двигателя, и затем вычисляется температура электролита, необходимая для нового заданного значения напряжения.

Блок PCM управляет теперь регулятором напряжения генератора. Частота равна частоте входного сигнала блока PCM (100-200 Гц). Регулятор напряжения использует при этом скважность от ок. 15% = 12,5 В до 95% = 16,5 В.

Блок PCM передает затем генератору новое заданное значение напряжения. При этом этот сигнал является временной информацией, пока блок PCM снова не установит новое значение (исключение: изменение нагрузки генератора). Напряжение генератора может лежать в диапазоне от 12,5 В до 16,5 В.

Режимы работы системы Smart Charge

При нормальном режиме система работает, исходя из установленного заданного значения напряжения, оптимального для соответствующей температуры аккумулятора. Блок PCM в зависимости от автомобиля направляет сигнал в:

  • BCM (модуль управления кузовом);
  • реле работы двигателя.

За счет этого на определенные потребители с высоким токопотреблением (например, система обогрева заднего или лобового стекла) ток подается только тогда, когда работает генератор.

Блок управления силовым агрегатом активирует контрольную лампу системы зарядки при включенном зажигании и выключенном двигателе, во время процесса запуска и, если скважность входного сигнала при работающем двигателе составляет 0% или 100%.

Запуск двигателя или частота вращения ниже номинальной

Генератор Smart Charge после включения зажигания и последующего процесса запуска не активируется.

За счет этого не возникает излишняя нагрузка крутящим моментом для двигателя при запуске. Регулятор напряжения активируется, когда он получает свой первый действительный сигнал блока PCM.

Генератор деактивирован до тех пор, пока частота вращения не превысит частоту вращения при запуске или частоту вращения ниже номинальной и за счет этого не будет активирован выходной сигнал блока PCM.

Полная нагрузка

В этом режиме работы прежде всего необходимо оптимизировать ускорение. Нагрузка крутящим моментом за счет генератора регулируется блоком PCM в сторону уменьшения до минимального возможного значения посредством понижения заданного значения регулятора напряжения.

Во избежание разрядки аккумулятора, режим полной нагрузки периодически отключается, т.е. между следующими друг за другом фазами положения полной нагрузки, генератор ограниченное время работает в нормальном режиме.

Вам будет интересно  Как работают клапана двигателя

Регулирование оборотов холостого хода

Через провод входного сигнала блок PCM постоянно получает сигналы о нагрузке генератора, эта нагрузка возникает вследствие подключения потребителей с высоким токопотреблением и может быть причиной разряда аккумулятора.

Блок PCM реагирует, управляя электронным модулем дроссельной заслонки и увеличивая холостой ход (более высокая частота вращения = более высокий ток нагрузки). Метод регулирования воздуха при холостом ходе с помощью дроссельной заслонки с электронным управлением имеет преимущество.

В системе зарядки Smart Charge блок PCM также в дополнение к этому в состоянии компенсировать падение частоты вращения в режиме холостого хода при высокой электрической нагрузке посредством управления заданным значением регулятора напряжения.

Повышение частоты вращения холостого хода вследствие слишком высокой нагрузки генератора в режиме «холостой ход» осуществляется не сразу. Только после поездки на автомобиле и возвращения в режим холостого хода (машина стоит) устанавливается повышенная частота вращения холостого хода.

Неисправности системы

При неисправности системы Smart Charge заданное значение напряжения регулируется в соответствии со значением, установленным в генераторе, все другие режимы в этом режиме не работают.

Условием для продолжения работы системы является возможность получения данных генератором, несмотря на неисправность в проводе входного сигнала, идущего к блоку управления силовым агрегатом. Контрольная лампа системы зарядки загорается при неисправности в системе и при низком напряжении зарядки.

Заключение

Вы узнали что такое ЭСУД автомобиля, устройство электронной системы управления двигателем и зажигания авто, структуру и принцип работы основных агрегатов – это поможет правильной диагностике ЭСУД и устранению возникающих неисправностей при эксплуатации транспортного средства.

Неисправности ЭСУД негативно сказываются на ходовых характеристиках автомобиля, поэтому в программу модуля управления силовым агрегатом была внедрена функция бортовой диагностики EOBD. При возникновении серьезных отклонений в параметрах работы и неисправности двигателя, на панели приборов активируется индикатор модуля управления (MIL).

Расстояние, пройденное автомобилем с активированным индикатором MIL, фиксируется блоком PCM, поэтому не допускайте пробега более 500 километров – это может повлечь дорогостоящий ремонт и обоснованный отказ от гарантийных обязательств дилера, обслуживающего Ваш автомобиль.

Поделитесь в комментариях, как часто Вам приходиться обращаться в автосервис, а какие неисправности системы управления двигателем устраняете самостоятельно? Подписывайтесь на рассылку новых статей, чтобы быть в курсе технического прогресса в автомобилестроении.

Блок управления двигателем: сердце современного силового агрегата

Под электронным блоком управления подразумевают любую систему на микропроцессоре, которая отвечает за работу той или иной электрической компоненты автомобиля (или нескольких подсистем). Часто в англоязычной литературе встречается термин ECU, что расшифровывается как Electronic Control Unit.

распиновка блока

Выделяют виды блоков:

  • просто ECU – управляющий любой подсистемой ЭБУ, кроме двигателя;
  • ECM – модуль, отвечающий за двигатель (по-английски Engine Control Module);
  • объединенный моторно-трансмиссионный ЭБУ, управляющий и КПП, и двигателем;
  • систему управления тормозами;
  • блок управления автоматической коробкой передач;
  • ЭБУ контроля подвески;
  • центральный ЭБУ управления и блок синхронизации;
  • главный ЭБУ;
  • и пр.

Всего контроллеров в современном продвинутом автомобиле, оснащенном по последнему слову инженерной техники, бывает до 80, и более. Все вместе ЭБУ составляют единую систему – автомобильный компьютер.

Важным элементом ЭБУ является его программное обеспечение («прошивка»). Она отвечает за логику работы компонентов, и модификация прошивки ЭБУ способна существенно изменить эксплуатационные характеристики машины. Это часто используется любителями тюнинга и гонщиками, программно усиливающими те или иные стороны своего «железного коня» — оптимизирующими расход топлива, параметры разгона, и многое другое.

Где находится блок управления двигателем

Место установки блока управления двигателем в колесной арке

Начнем с того, что на сегодняшний день среди автопроизводителей не существует какого-либо стандарта, который четко определяет место установки блока управления двигателем. Другими словами, на разных автомобилях данное устройство может располагаться в различных местах.

В зависимости от особенностей конструкции того или иного ТС, предпочтений инженеров и т.п., ЭБУ может находиться в салоне автомобиля, выноситься в подкапотное пространство и так далее. Другими словами, для моделей различных производителей место установки электронного блока индивидуально.

Например, в некоторых авто блок располагается в салоне под торпедо, причем может быть зафиксирован как в области центральной консоли или под панелью приборов, так и под бардачком. В ряде случаев нужно поднять ковровое покрытие в ногах переднего пассажира, после чего можно увидеть защитную металлическую пластину, которая прикрывает ЭБУ.

Также на многих ТС контроллер находится прямо в моторном отсеке. В некоторых случаях отмечено его расположение ближе к лобовому стеклу, слева или справа, возле «стаканов» передних стоек и т.д. Как правило, элемент крепится в самых верхних точках. Это необходимо для минимального попадания влаги на электронное устройство.

Однако такое место установки практикуется не на всех машинах. Существует большое количество моделей, на которых область расположения ЭБУ выбрана откровенно неудачно (например, ближе к радиаторной решетке для лучшего охлаждения или рядом с каналами для слива дождевой воды).

В последнем случае проблема заключается в том, что когда канал забивается грязью и листьями, вода начинает попадать на электронный блок, что вызывает его усиленную коррозию и т.д. Также добавим, что среди разных вариантов установки еще встречаются такие места, как ниша левого или правого брызговика. Обычно чтобы добраться до блока управления, в этом случае нужно предварительно снимать подкрылки.

С учетом вышесказанного становится вполне очевидно, что если блок не установлен на видном месте под капотом, без надлежащего опыта и знаний быстро обнаружить устройство может быть весьма затруднительно. По этой причине рекомендуется отдельно изучить руководство по эксплуатации и ремонту конкретного ТС, чтобы избежать сложностей и ошибок.

Дело в том, что на практике неопытные автолюбители часто путают ЭБУ двигателем с другими блоками управления, которые находятся в составе общей электронной системы автомобиля (блоки ABS, блоки AIRBAG и т.п.).

При этом отдельное изучение мануала или профессиональная консультация помогут быстро определить, где расположен блок управления двигателем на том или ином автомобиле, а также добраться до «мозгов» машины без риска что-либо случайно отключить, замкнуть или сломать.

ЭБУ в современном автомобиле

Первым делом стоит начать с терминов. ЭБУ – это «мозги» автомобиля или электронный блок управления. Многие его знают как контроллер. Это действительно мозг машины. Без этого блока все остальные элементы и механизмы превращаются просто в безжизненный хлам, огромное количество пластика, проводов и микропроцессоров.

эбу что это такое

Электронный блок получает данные от датчиков. Затем информацию обрабатывает по специальным алгоритмам. Далее он посылает специальные команды на исполнительные устройства. ЭБУ есть даже в моделях от АвтоВАЗа. Есть там и датчики – например, кислородный, температуры ОЖ, скорости. Что уж говорить про современные иномарки.

Вот это и есть электронный блок управления ЭБУ. Простыми словами, это умный прибор, что держит на контроле все процессы, которые каждую секунду проходят в автомобилях. В секунду обрабатывается до тысячи разных сигналов.

Как выглядит ЭБУ и что собой представляет?

Блок управления изготавливают в самых разных корпусах. Зачастую это пластиковые или алюминиевые основания. К примеру, ЭБУ ВАЗ-2172 изготовлен в пластиковом корпусе. На большинстве иномарок корпус металлический. Материал по большей части зависит от места расположения блока. Так, если на моделях от АвтоВАЗ блок установлен в салоне, то он из пластика. Если бы его устанавливали под капотом, сделали бы из металла.

ремонт эбу

Но корпус – это далеко не весь ЭБУ. Внутри корпуса находится электронная плата. Это и есть ЭБУ. Что это такое, мы уже примерно знаем. Из платы наружу выведены два разъема – это так называемая CAN-шина. К данным разъемам подсоединены провода от всех датчиков и исполнительных устройств. Нужно заметить, что некоторые блоки также оснащаются разъемом для обновления встроенного ПО, а также диагностическим OBD-II выводом. Как и любой компьютер, этот тоже иногда «глючит». Также сбои случаются в датчиках. В помощью диагностического разъема можно считать коды ошибок ЭБУ ВАЗ и тогда будет легче ремонтировать автомобиль. Больше не нужно искать поломки вручную.

Микросхемы ЭБУ подвержены достаточно сильному нагреву. Поэтому корпуса их имеют ребра. Последние выполняют функцию радиаторов, отводя лишнее тепло. Если взять и посмотреть на демонтированный блок, то по внешнему виду блок – это небольшая коробка размером 15 на 10 см, толщина ее составляет не более сантиметра.

Описание ЭБУ

Для начала разберемся с тем, что такое ЭБУ, где он может стоять в машине и для чего нужно это устройство. Ниже приведены фото девайса. В первую очередь рассмотрим основные функции, который выполняет этот девайс.

Плата блока управления

Плата блока управления

Функции

Электронный блок управления двигателем предназначен для приема поступающих импульсов и их обработки, а также дальнейшего перенаправления сигналов на всевозможные регуляторы и датчики. Информация, которую принимает электронная система управления двигателем, обрабатывается по определенному алгоритму. Впоследствии ЭБУ двигателя создает необходимые команды для составляющих компонентов исполнительного типа.

Благодаря тому, что в транспортном средстве имеется электронный блок управления двигателем, система позволяет оптимизировать основные параметры работы мотора, а именно:

  • контролировать показатель крутящего момента;
  • оптимизировать мощность ДВС для оптимальной работы;
  • производить контроль состава отработанных газов;
  • оптимизировать расход топлива.

Эти функции являются одними из наиболее основных, но в зависимости от модели блок может быть дополнен другими функциями. Кроме того, именно блок управления двигателем позволяет осуществить диагностику большинства систем транспортного средства при выявлении поломок. Если вы заметили, что на приборной панели загорелась лампочка CHECK, это свидетельствует о том, что в работе тех или иных систем ЭБУ зафиксировал ошибку. Чтобы получить точную информацию о неисправности, необходимо произвести диагностику блока и считать полученные коды неисправностей. Контрольная лампа системы управления двигателем позволяет вовремя выявить поломку и исправить проблему.

Диагностика ЭБУ компьютером

Диагностика ЭБУ компьютером

Где находится блок управления двигателем? Устройство стоит, как видно по фото, в торпеде автомобиля. На большинстве транспортных средств его расположение именно такое, в частности, ЭБУ стоит посредине, внутри центральной консоли. Следует отметить, что вопреки распространенному мнению, электронное управление двигателем не позволяет защитить авто от угона и кражи. Чтобы защитить авто от угона, необходимо применять дополнительные меры безопасности, о которых мы расскажем позже.

Компоненты

Из каких же элементов состоит электронное устройство для управления автомобильным ДВС:

  • программное обеспечение;
  • аппаратное обеспечение.

Непосредственно само программное обеспечение состоит из нескольких модулей вычислительного типа:

  1. Контрольный. Данный компонент изначально настроен на диагностику, проверку и инспектирование исходящих импульсов. Кроме того, контрольный модуль позволяет корректировать сигнал, если это нужно. Следует отметить, что контрольный компонент программного обеспечения при необходимости сможет даже заглушить двигатель.
  2. Функциональный. Основным предназначением функционального модуля является получение импульсов, которые поступают от различных регуляторов и датчиков. После получения сигнала функциональный модуль осуществляет его обработку, в дальнейшем формируя необходимые команды для оборудования и устройств исполнительного типа.

Схема взаимодействия блока с системами

Схема взаимодействия блока с системами

Что касается аппаратного обеспечения, то в его состав входят различные электронные компоненты — микропроцессоры, платы и т.д. Установленный в ЭБУ аналогово-цифровой преобразователь позволяет ловить аналоговые импульсы, поступающие на устройство от различных регуляторов. В дальнейшем этот преобразователь переводить сигналы в цифровой формат, на который, собственно, и ориентирован основной микропроцессор.

В том случае, если есть необходимость в обратном преобразовании сигналов, которые исходят от процессора, то элемент преобразует и их. Помимо этого, на блок поступают и другие сигналы импульсного типа, проходящие сначала через преобразователь, который переводит их формат в цифровой.

Защита ЭБУ в автомобиле от угона заключается в установке специального резервуара или сейфа, который не позволит злоумышленнику подключиться к двигателю. Взаимозаменяемость ЭБУ — это, конечно, хорошо, ведь в случае поломки устройства автовладелец всегда сможет заменить его на новое. Однако из-за этого же у преступника есть возможность отключить автомобильный блок и установить свой собственный, который позволит обойти систему от угона авто.

Лампа Check, которой управляет ЭБУ

Лампа Check, которой управляет ЭБУ

Принцип работы

Что касается принципа работы, то схема ЭБУ позволяет осуществлять прием импульсов от регуляторов, которых в общей сложности может быть не один десяток:

  • это сигналы о расходе воздуха;
  • параметры, поступающие с кислородного датчика;
  • данные о положении и частоте вращения коленвала;
  • импульсы о неровности трассы и т.п.

Кроме того, что блок осуществляет обработку импульсов, он также отправляет их к различным приборам:

  1. На зажигание автомобиля. В зависимости от типа мотора, это может быть как одна, так и несколько катушек. Как известно, предназначение зажигания заключается в своевременной подаче искры от свечи на цилиндры ДВС.
  2. Диодный индикатор на панели приборов — этот элемент предназначен для выдачи сообщений водителю и наличии ошибок. Ошибки могут касаться не только мотора, но и ЭБУ.
  3. На форсунки мотора, позволяющие произвести впрыск горючей смеси в цилиндры агрегата. В данном случае частота изменения объема смеси может изменяться, поскольку это зависит от разных условий. Основную роль в данном случае играют характеристики форсунок, в частности, как они реагируют на изменения команд от блока, а также скорость их работы.
  4. Тестеры. Благодаря тестерам автовладелец может подключиться к блоку управления и произвести диагностику составляющих мотора (автор видео — VideoMix).

Плюсы и минусы электронного блока управления двигателем

Сначала рассмотрим достоинства:

  • с помощью ЭСУД осуществляется оптимизация основных рабочих параметров автомобиля;
  • снижается расход воздушного потока;
  • обеспечивается более упрощенный запуск силового агрегата;
  • у автовладельца больше нет необходимости производить регулировку параметров работы мотора, практически все, что нужно, регулируется автоматически;
  • если двигатель работает правильно, то корректная работа ЭБУ позволит добиться оптимальных параметров в плане экологической чистоты.
  1. Стоимость ЭБУ достаточно высокая. В случае выхода из строя девайс можно попытаться отремонтировать, но если это не поможет, то устройство подлежит замене.
  2. Чтобы система работала правильно, проводка автомобиля должна быть целой, в частности, речь идет об участке цепи питания самой ЭСУД.
  3. Для оптимальной работы водитель должен заправлять только качественное горючее.
  4. Чтобы выявить поломку в работе агрегата, автовладельцу потребуется специальное оборудование, которое обычно стоит недешево.

Что контролирует

Для всех расшифровка стала уже вполне понятной и известной. Понять смысл устройства стало куда проще даже после этого шага. Теперь вы знаете, что это за аббревиатура и как расшифровывается рассматриваемый нами ЭБУ. Довольно часто используется только аббревиатура в технической документации, поскольку автомобилистам нет смысла каждый раз напоминать её значение. ЭБУ можно называть коротко с помощью аббревиатуры, использовать полное понятие электронного блока управления, либо просто контроллер. Суть от этого никак не изменится. Куда важнее узнать, что же такое этот ЭБУ и где он находится в автомобиле.

Двигатель внутреннего сгорания автомобиля

Двигатель автомобиля, контролируемый ЭБУ

Фактически блок является мозгами современного автомобиля, без которого мы бы получили груду металла со всевозможными датчиками, проводами и электронными устройствами, никак не связанными друг с другом.

ЭБУ практически постоянно находится в режиме работы, поскольку на него поступает огромный объём информации от всевозможных датчиков. Эти данные блок обрабатывает, используя предусмотренные в его программе алгоритмы, после чего отправляет командные сигналы на так называемые исполнительные устройства. Блок заставляет в соответствующем режиме работать насосы, системы зажигания, форсунки и многое другое.

В итоге получается так, что блок выступает в качестве руководителя для всех предусмотренных в автотранспортном средстве электронных процессов. А это от элементарной работы фар до управления системами безопасности.

Есть достаточно обширный перечень датчиков, с которых информация сначала идёт на наш ЭБУ, а затем, проходя обработку, сам блок отправляет команды на исполнительные устройства, в зависимости от результатов анализа полученных сведений.

Среди основных датчиков, которые зависят от контроллера, можно выделить несколько. Они отвечают за:

  • температуру мотора;
  • холостой ход;
  • подачу горючего;
  • подачу кислорода;
  • температуру окружающей среды;
  • антиблокировочную систему;
  • систему стабилизации;
  • антизанос;
  • скорость;
  • текущее положение заслонки дросселя;
  • уровень нажатия педали акселератора;
  • коленвал;
  • тормозную систему;
  • уровень ОЖ;
  • уровень тормозной жидкости;
  • напряжение в бортовой сети;
  • гидроусилитель;
  • электроусилитель руля;
  • кондиционер;
  • отопление и пр.

Но тут перечислен только базовый набор, который есть практически на каждом современном автотранспортном средстве. На более продвинутых машинах в богатой комплектации список значительно увеличивается.

Обработав полученную информацию, контроллер или мозг автомобиля отправляет команды различным исполнительным узлам, системам и механизмам. Это позволяет внести изменения в работу:

  • дроссельной заслонки;
  • системы подачи воздуха;
  • зажигания;
  • фаз газораспределения;
  • системы кондиционирования;
  • выхлопной системы;
  • освещения;
  • стеклоподъёмников;
  • подогрева;
  • АКПП и пр.

Но и тут речь идёт исключительно о минимальном наборе, характерном для базовой комплектации недорогой иномарки. Увеличьте комплектацию или купите более современных и продвинутый автомобиль с большим количеством электроники, и ЭБУ будет посылать команды целому ряду дополнительных систем, механизмов и устройств.

Вам будет интересно  Инструкция, как помыть двигатель автомобиля

Для многих это удивительно, что один небольшой блок выполняет столь сложную работу. Причём делает это постоянно, без перерывов, одновременно обрабатывая огромный объём информации.

Из-за широких функций и возможностей некоторые полагают, что ЭБУ должен выглядеть как компьютер, ноутбук или планшет, обладать внушительными размерами. Исключением можно назвать лишь отсутствие экрана. Но в действительности все поражаются ещё больше, видя реальный форм-фактор этого управляющего блока.

Внутренняя начинка

С коробкой разобрались. Теперь ведь интересно заглянуть внутрь. Под оболочкой, выполняющей роль кожуха и защиты, скрывается плата внушительных размеров. Во многом напоминает те платы, которые вмонтированы в системный блок обычного персонального компьютера.

Плата блока управления

Плата электронного блока управления двигателем

Вдаваться в подробности устройства платы ЭБУ не имеет смысла. Тут важно знать, что она включает в себя 2 ключевых узла. Это память и программное обеспечение.

Причём память здесь есть 3 типов:

  • Постоянно запоминающее программируемое устройство или просто ППЗУ. Она служит для закладки различных программ и функций для работы силового агрегата;
  • Оперативное запоминающее устройство, либо же сокращённо ОЗУ. Этот отдел памяти блока необходим для осуществления работы с промежуточной информацией. Фактически здесь данные обрабатываются в режиме реального времени;
  • Последней частью памяти является ЭРПЗУ. Также запоминающее устройство, которое называют электронным репрограммируемым. Хранит временную информацию в виде кодов доступа, блокировки, пробега, расхода топлива и пр.

Следующим разделом платы блока управления выступает программное обеспечение. Его делят на 2 типа:

  • Наиболее важным считается функциональное ПО. Сюда приходит различная информация со всевозможных датчиков. ПО анализирует данные и отправляет затем команды на исполнение;
  • Другим типом памяти выступают модули или контрольные микросхемы. Нужно для контроля полученной информации и проверки на предмет ошибок. При их обнаружении ПО старается устранить ошибки. Если это сделать не удаётся, тогда водитель видит их в виде буквенно-цифровых обозначений. Самым известным можно считать Check или Check Engine. В некоторых случаях, если ошибка критическая, ПО блокирует возможность пуска ДВС.

Также о программном обеспечении в составе платы ЭБУ хорошо известно поклонникам чип-тюнинга. Сюда вносятся изменения, переписываются программы, задаются новые алгоритмы.

Расположение

Справедливо будет узнать, где именно в автомобиле находится ЭБУ. В действительности блок располагается в разных местах. Всё зависит от конкретного автомобиля и порой даже года выпуска.

ЭБУ двигателя Mazda

Расположение ЭБУ двигателя Mazda

Есть 2 основных места, куда автопроизводители в процессе сборки транспортного средства устанавливают управляющий блок.

  1. Салон. Поскольку салон является достаточно вместительным пространством, искать следует исходя из руководства к вашему автомобилю. В случае с машинами производства АвтоВАЗ выбирают место под панелью около печного радиатора. У некоторых блок располагается под задним диваном. Это наиболее актуально в последнее время для иномарок премиум класса. Есть редкие случаи, когда блок ставят в багажный отсек.
  2. Подкапотное пространство. Вообще инженеры давно пришли к выводу, что располагать блок под капотом не очень правильное решение. Это обусловлено постоянным воздействием грязи, воды, влаги, осадков, высоких температур. Всё это негативно влияет на блок, даже если он заключён в прочный и надёжный корпус. Искать ЭБУ следует в районе аккумуляторной батареи, около блока с предохранителями.

На практике отыскать управляющий блок даже на автомобиле, который вы только приобрели и не успели разобраться с его устройством, не сложно.

Автопроизводители никогда не размещают блоки под панелями, которые тяжело снять или для доступа требуется разбирать половину салона. Обычно это одна скрытая панель, удерживающаяся на фиксаторах или на 1-2 саморезах. В подкапотном пространстве найти ЭБУ ещё проще. Визуально ищите коробочку, от которой отходит пара шлейфов.

Опытные автомобилисты и специалисты в области диагностики автомобилей настоятельно не рекомендуют любителям пытаться разбирать и чинить блок. Это сложное устройство, что вы уже наверняка поняли. Потому и крайне дорогостоящее даже на автомобилях бюджетного класса. Если возникают проблемы, лучшим решением будет обращение в проверенный автосервис.

Неисправности

Часто автолюбители интересуются, как можно проверить свой ЭБУ на работоспособность. Для этого не нужно разбирать весь блок и пытаться что-то там открутить. Следует ориентироваться на косвенные признаки.

Масло попало в ЭБУ

Неисправность блока управления из-за попадания масла на плату

Есть несколько признаков неисправности ЭБУ, которые проявляются в виде следующих симптомов:

  • двигатель не запускается вообще;
  • все или часть систем блокируются;
  • мотор работает с погрешностями;
  • плавают обороты;
  • проваливаются обороты мотора;
  • вылезают ошибки.

Любая неисправность в ЭБУ является крайне неприятной, поскольку блок считается надёжным и долговечным элементом. Плюс очень дорогим. Никто не хочет столкнуться с необходимостью его замены. Симптомы поломок появляются лишь в результате неправильной эксплуатации, механических повреждений или некорректной заливки программного обеспечения, что часто случается с любителями чип-тюнинга.

Причины самой поломки предельно банальные. Это короткое замыкание, попадание на плату влаги и воды, перегрузка, перегрев, физические воздействия, влияние коррозийных процессов.

Серьёзное повреждение или перегорание платы практически не оставляет шансов на восстановление работоспособности старого управляющего блока. Потому приходится покупать новый. И тут возникает главная проблема в виде высокой стоимости. Если у вас бюджетный автомобиль в простой комплектации, в среднем за блок придётся отдать не менее 300-500 долларов.

Не стоит сразу же спешить выкидывать свой ЭБУ. Для начала попробуйте разобрать блок и посмотреть, что произошло внутри. Бывает так, что ошибки вылезают из-за проблем лишь с одной небольшой микросхемой, коррозия задела некоторые участки, нарушились контакты. Подобные неисправности устраняются с вероятностью 80%. После такого ремонта ЭБУ может прослужить ещё много лет. Но лучше отдать в ремонт хорошему специалисту, а не пытаться что-то сделать самому, не имея надлежащего опыта, знаний и умений.

ЭБУ является важнейшим и неотъемлемым составляющим компонентом любого современного автомобиля. И чем больше электроники используется в машине, тем выше значимость блока управления. Но тем и выше его ответственность. Потому производители крайне ответственно подходят к вопросу его создания, чтобы предотвратить возможные сбои, минимизировать неисправности и не допустить появления ошибок. Невероятно сложное устройство, внешность которого порой не даёт поверить в это.

Типы, конструкция и характеристики блоков управления двигателем

Все ЭБУ двигателя можно разделить на три группы по функционалу:

  • Модули управления двигателем без дополнительного функционала;
  • Раздельные блоки управления отдельными системами силового агрегата;
  • Комбинированные блоки управления двигателем и сопряженными с ним системами.

Схема электронной системы управления бензиновым инжекторным двигателем

Устройства первого типа — это обычные модули управления двигателем, берущие на себя все указанные выше обязанности. ЭБУ этого типа могут иметь различный функционал, характеристики и применимость, например — для дизельных и бензиновых двигателей, для моторов с различным типом впрыска (одновременным, фазированным, попарно-параллельным, комбинированным), различных экологических классов и т.д.

Устройство второго типа — это отдельные модули, управляющие только одной или несколькими системами двигателя. Как правило, такие ЭБУ используются для управления системой охлаждения (или отдельно вентилятором) и некоторыми другими. Устройства третьего типа объединяют в себе несколько модулей, наиболее часто — блок управления двигателем и трансмиссией (PCM), но существуют и ЭБУ с более широким функционалом.

Все ЭБУ, независимо от типа и конструкции, имеют две взаимосвязанных составляющих:

  • Аппаратное обеспечение — микроконтроллер, входные и выходные устройства, прочее «железо»;
  • Программное обеспечение (ПО) — программы с алгоритмами, заложенные в микроконтроллер для выполнения поставленных перед ним задач.

Основу ЭБУ составляет микроконтроллер — микросхема, в которой объединены микропроцессор, модули оперативной и постоянной памяти (ОЗУ и ПЗУ) и необходимые периферийные устройства. В сущности, это готовый компьютер, собранный в одной микросхеме, и решающий строго определенный круг задач.

Также в аппаратное обеспечение модуля управления двигателем входят:

  • Аналого-цифровой преобразователь (АЦП) — схема, преобразующая поступающий от датчиков аналоговый сигнал в цифровую форму, удобную для обработки микроконтроллером;
  • Цифро-аналоговый преобразователь (ЦАП) — схема, преобразующая поступающий от микроконтроллера цифровой сигнал в аналоговый вид, удобный для обработки исполнительными устройствами и механизмами;
  • Схемы преобразования сигналов в соответствии с используемы протоколом обмена данными (CAN, LIN и другими), построенные на специализированных микросхемах;
  • Схемы питания и вспомогательные блоки, обеспечивающие бесперебойную работу микроконтроллера, преобразователей и контроллера в целом.

Программное обеспечение ЭБУ — это встроенные в микроконтроллер программы с алгоритмами, на основе которых осуществляется обработка сигналов от датчиков и подача команд на исполнительные устройства. ПО состоит из двух основных блоков:

  • Функциональный — блок основных алгоритмов, осуществляющих получение и обработку данных от датчиков и формирование управляющих сигналов, поступающих на исполнительные устройства;
  • Контрольно-вычислительный — блок алгоритмов, с помощью которых проверяется работа ЭБУ, корректность формируемых управляющих сигналов, корректировка этих сигналов и т.д. В случае проблем данный блок может переводить ЭБУ и двигатель в аварийный режим работы, либо вовсе отключать их.

Блок управления программируется под определенный двигатель в соответствии с его характеристиками и особенностями эксплуатации. Обычно программирование осуществляется на заводе-изготовителе двигателя или автомобиля, однако при необходимости ЭБУ может быть перепрограммирован.

ЭБУ соединяется с датчиками и исполнительными устройствами с помощью шин, обмен данными по которым осуществляется в соответствии с тем или иным протоколом. Сегодня наиболее распространены протоколы CAN (Controller Area Network) и LIN (Local Interconnect Network), первый чаще используется на зарубежных автомобилях, второй — на отечественных.

Модуль управления двигателем соединен с множеством датчиков — датчиком положения коленчатого вала (ДКПВ), температуры двигателя, кислорода (лямбда-зондом), расхода воздуха, положения дроссельной заслонки, детонации и другими. Выходные сигналы от контроллера поступают на различные устройства — топливные форсунки, блок зажигания, клапан рециркуляции отработавших газов, реле включения и выключения различных агрегатов, блоки управления топливным насосом и другими агрегатами. Также ЭБУ может обмениваться данными с другими системами — трансмиссией, антиблокировочной системой тормозов, системами безопасности и комфорта, и т.д.

Развитие технологий, микроэлектроники и программирования привели к миниатюризации ЭБУ с одновременным увеличением их возможностей. Современный модуль управления двигателем — это компактный блок, имеющий низкое энергопотребление и высокую надежность. ЭБУ, в зависимости от назначения, может иметь питание 6, 12 и 24 В, и оснащаться разнообразными разъемами для подключения датчиков и шин.

Вопросы выбора, замены и настройки блока управления двигателем

Прежде, чем менять или ремонтировать ЭБУ, необходимо убедиться, что именно он является причиной неудовлетворительной работы силового агрегата. О неисправности блока управления говорят некорректное функционирование отдельных систем двигателя, невозможность запуска мотора, плохая управляемость двигателя (не слушается педали газа и т.д.) и другие. Также о поломке могут оповещать соответствующие индикаторы на приборной панели. Во всех этих и многих других ситуациях необходимо выполнить диагностику блока, и в случае неисправности выполнить его замену или ремонт.

ЭБУ двигателя — сложное устройство, ремонт которого доступен только специалистам, поэтому при поломке данного модуля следует обратиться в сервисный центр или к мастерам с соответствующей квалификацией. Самостоятельно выполнять ремонт, замену и настройку ЭБУ рекомендуется только при наличии необходимых знаний и в случае, если у транспортного средства уже закончился гарантийный срок.

В случае полной замены ЭБУ необходимо использовать устройство того же типа и модели, что было установлено на автомобиле ранее. В ряде случаев возможно применение блоков другой модели, однако новое устройство должно обладать тем же функционалом и характеристиками, что и старое. Отдельное внимание при выборе необходимо уделять используемому в ЭБУ протоколу передачи данных — CAN или LIN. Подключить к ЭБУ с шиной CAN устройство, использующее шину LIN, и наоборот, напрямую невозможно, а применение адаптеров значительно повышает стоимость и трудозатраты.

С осторожностью следует прибегать к перепрограммированию ЭБУ при монтаже вспомогательных систем и тюнинге двигателя. Для выполнения данной операции должно использоваться специальное оборудование с лицензионным ПО, в противном случае возможны проблемы и поломки.

При правильном выборе, ремонте или замене ЭБУ силовой агрегат будет надежно и уверенно работать в любых условиях.

Почувствовав дыхание зимы, все автомобилисты задумываются о замены сезонной резины. И очень многие из нас при покупке зимних шин встают перед трудным выбором — «шиповки» или «липучки»? Каждый тип шин имеет свои преимущества и недостатки, и отдать предпочтение чему-то одному бывает очень сложно. В этой статье мы попытаемся сделать этот непростой выбор.

Ремонт ЭБУ двигателем и подбор блока для замены

Ремонт ЭБУ ECU

Важно понимать, что ремонт электронного блока управления является сложной и ответственной процедурой, которая требует определенных навыков, оборудования, знаний и понимания принципов работы устройства.

При этом ремонтировать блоки управления рекомендуется только в тех случаях, когда заменить контроллер на исправный нет возможности. Как правило, не удается заменить ЭБУ на старых и редких автомобилях (возникают трудности с подбором как нового, так и б/у контроллера), а также тогда, когда стоимость блока очень высока.

Что касается попыток сэкономить и отремонтировать ЭБУ самостоятельно, в этом случае риск повреждения электронного устройства высок. Также результатом попыток установить такой блок после ремонта в автомобиль является выход из строя и других систем на борту транспортного средства.

Простыми словами, на обычном СТО блок просто меняется на новый или заведомо рабочий. В остальных случаях попытки ремонта могут не только не принести желаемого результата, но и усугубить ситуацию. По этой причине ремонтировать блок нужно только в специализированных центрах, которые сами определят, целесообразно или нет проводить ремонтные процедуры с тем или иным типом устройств.

  • Теперь перейдем к подбору устройства в рамках замены. Как уже говорилось выше, сначала нужно найти возможную причину, которая и привела к выходу блока из строя. Это позволит избежать скорой замены только что установленного ЭБУ.

Итак, необходимо учитывать, что в продаже часто встречаются восстановленные блоки, причем ремонт провел сам завод-изготовитель. Такая практика является нормальной, так как экономически заводу выгоднее восстановить старый блок, чем изготавливать новый. Естественно, завод не будет ремонтировать полностью залитый водой, разбитый или сожженный ЭБУ. При этом на восстановленную деталь должна даваться гарантия, как на новое устройство.

  • При выборе нужно понимать, что визуально, а также по разъемам и маркировке электронные блоки управления могут быть одинаковыми, однако ПО в таких устройствах разное. Дело в том, что для каждого типа ДВС на той или иной модели двигателя, а также в зависимости от года выпуска, программное обеспечение может сильно отличаться.

Получается, вполне возможно, что с не подходящим для конкретной машины ЭБУ автомобиль будет работать, однако о стабильности такой работы мотора и других агрегатов и узлов говорить не приходится.

Вполне очевидно, что новый электронный блок должен быть точно таким же, как и старый. Для подбора нужно не только учитывать марку и модель автомобиля, но и объем/тип двигателя, год выпуска авто, VIN-код, а также все маркировки, которые производитель нанес на сам блок.

  • После того, как нужный блок был подобран, остается только реализовать подключение устройства к соответствующим разъемам. На практике ЭБУ далеко не всегда рассоложен в удобном и легкодоступном месте, так что нужно знать, где стоит блок управления двигателем на том или ином автомобиле. Перед подключением клеммы с АКБ следует обязательно снять.

Чип-бокс чип-тюнинг двигателя
Рекомендуем также прочитать статью о том, что такое блок увеличения мощности двигателя на примере дизельного ДВС. Из этой статьи вы узнаете о чип-боксе, как работает данное устройство и на что можно рассчитывать после его установки.

Еще нужно помнить, что многие электронные блоки управления нуждаются в дополнительной настройке. В одном случае это просто автоматическая подстройка ЭБУ под параметры и особенности работы конкретного авто (самоадаптация). Для такой подстройки на машине нужно просто поездить в разных режимах.

Более сложным случаем является необходимость выполнять перепрограммирование, более известное под названием чип-тюнинг. Такие доработки нужны тогда, когда требуется внести коррективы в работу ДВС, а также отдельных систем автомобиля.

Результата добиваются путем изменения штатного ПО и заводских стандартных настроек, которые «зашиты» в память ЭБУ. Качественно такую процедуру могут выполнить только квалифицированные специалисты, которые имеют подходящее программное обеспечение и оборудование.

Советы автомобилистам

Если ЭБУ неисправен, попробуйте его отремонтировать. Но не самостоятельно! Такую тонкую работу лучше доверить мастерам с опытом. Проблема в «железе» чаще всего возникает от перегрева, короткого замыкания, коррозии или перегорания какого-нибудь конденсатора. Последнее устраняется легче всего: конденсатор просто перепаивают, и дальше можно пользоваться своим блоком управления.

Коррозийные повреждения могут затронуть дорожки, и их (теоретически) тоже можно восстановить. Работа это тонкая, требующая умения, специальных инструментов, оборудования и знаний. Так что лучше сдать контроллер в ремонт и уповать на лучшее.

Часто проблемы с блоком управления появляются после ДТП, даже если оно не затронуло сам блок. Удар, сотрясение могут вывести из строя электронное устройство. Ну а если есть видимые повреждения корпуса, это в большинстве случаев приговор устройству.

Чип-тюнинг – это лотерея. Если есть желание рискнуть (в том числе деньгами на новый ЭБУ), можно попробовать улучшить характеристики двигателя. Но такие попытки нередко приводят к обратному эффекту, то есть сбою в ПО, после которого блок требует перепрошивки (не бесплатно, конечно).

Если необходимо определить, действительно ли проблема в ЭБУ, или это «шалит» механическая часть, можно найти аналогичный рабочий ЭБУ и временно поставить его на свой автомобиль. Проблемы исчезли – менять блок управления, проблемы остались – пора к механикам на поклон.

Заключение

Поломка электронного блока управления – одна из довольно неприятных, в основном из-за неясности того, как ее устранять. Покупка нового ЭБУ может обойтись довольно дорого, но без этого устройства современный автомобиль превращается в груду разрозненного железа, несогласованного между собой и зачастую неподвижного и бесполезного. Поэтому лучше сразу отнестись ответственно к защите ЭБУ от факторов риска.

Источник https://lesovoj.ru/elektronnaya-sistema-upravleniya-dvigatelem/

Источник https://avto-idea.ru/sovety/blok-upravleniya-dvigatelem-serdtse-sovremennogo-silovogo-agregata/

Источник

Источник

Author: mag

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *