Что такое карбюратор: конструкция и принцип работы

Что такое карбюратор: конструкция и принцип работы

Карбюратор автомобиля

Современные модели транспортных средств оснащаются как карбюраторными, так и инжекторными двигателями. В отличие от инжекторов карбюраторы, появившиеся значительно раньше, за годы своего существования претерпели различные изменения и доработки, обретя неоспоримые достоинства. Несмотря на довольно сложную конструкцию карбюраторные моторы являются одними из самых простых в обслуживании.

Разработка и производство

В истории автомобилестроения кабюратор был сконструирован и собран в 1895 году техником-самоучкой немецкого происхождения Вильгельмом Мэйбахом. Карбюраторные двигатели, как и сами карбюраторы, за прошедшие годы не раз изменялись, однако принцип их работы сохранился неизменным. Технология испарения топлива, использовавшаяся в первых версиях карбюраторов для образования топливно-воздушной смеси, в современных моделях была заменена на технологию распыления горючего, что стало основным отличием и преимуществом данного узла автомобиля.

Карбюраторы новой конструкции начали производиться массово в 1925 году всемирно известным концерном Bosch. Надежность и безопасность транспортных средств удалось повысить за счёт внесения в конструкцию карбюраторов изменений, связанных с интеграцией топливного насоса и системы впрыска топлива. Конструктивные изменения карбюратора позволили приступить к созданию инновационных силовых агрегатов, работающих на дизельном топливе. Спустя десять лет с конвейера завода Mercedes сошёл первый автомобиль, оснащённый дизельным двигателем.

Налаженный выпуск инжекторных двигателей начал требовать повышения мощности бензиновых моторов. Достичь этого удалось за счёт внедрения впускного коллектора, что спровоцировало начало производства в середине 40-х годов двигателей с системой непосредственного впрыска топлива и карбюратором большей мощности.

Концерн Bosch в 1965 году выпустил на автомобильный рынок новую версию карбюратора с системой распределённого впрыска топлива. Конструкция карбюратора была значительно изменена и обзавелась электронасосом, который заменил ТНВД, что в результате позволило снизить стоимость и габариты всего узла.

Система распределённого впрыска топлива

Автоконцерн Mitsubishi Motors в 1994 году внедрил в карбюраторные двигатели систему непосредственного впрыска топлива. Подобное конструктивное решение имело свои преимущества: экономия топлива вкупе с достижением максимального крутящего момента.

Что такое карбюратор

ДВС автомобиля работает на топливно-воздушной смеси, образование которой осуществляется в карбюраторе — одном из наиболее важных узлов топливной системы транспортного средства. Смесь представляет собой смешение горючего и воздуха в строго определённых пропорциях.

На сегодняшний день карбюраторные двигатели считаются одними из самых распространённых. На заре автомобилестроения использовались барботажные карбюраторные моторы, которые со временем были заменены более производительными и совершенными с технической точки зрения мембранно-игольчатыми и поплавковыми аналогами.

Мембраны карбюратора мембранно-игольчатого типа разделяют камеры и объединятся штоком, один конец которого выполнен в форме иглы. Последняя, двигаясь вверх-вниз во время работы карбюратора, открывает и закрывает клапан, подающий в топливную систему горючее. Узлы такой конструкции считаются самыми простыми и устанавливаются в основном в грузовые автомобили и различную технику.

Принцип работы разных модификаций поплавкового карбюратора одинаков. Конструкция узла автомобиля очень проста: поплавок и поплавковая камера, в которой и формируется топливно-воздушная смесь. Карбюраторы такого типа отличаются неплохой тягой, динамичностью и способны поддерживать бесперебойную работу мотора авто, благодаря чему их чаще всего используют в автомобилестроении.

Конструкция карбюратора

Моновпрыск и карбюраторная система: отличия и сравнительный анализ

Моновпрыск — разновидность электронно контролируемой системы впрыска горючего в ДВС. В подобных системах объединены преимущества инжекторов и карбюраторов, поскольку они являются своеобразным промежуточным звеном между ними.

Моновпрыск первоначально использовался в авиастроительстве. Особенности такого узла позволяли поддерживать постоянный приток горючего в двигатель самолётов во время полётов. Моновпрыск, по сути, является модифицированной версией классической карбюраторной системы за одним исключением — управляется она компьютеризированным электронным блоком, контролирующим поступление бензина и работу топливонасоса и форсунок. Преимуществом моновпрыска являются его компактные габариты и сохранение неизменными основных функций карбюратора.

Система моновпрыска

Система моновпрыска способна поддерживать в двигателе на регулярной основе минимальное давление в 1 бар, которого достаточно для обеспечения бесперебойной работы силового агрегата. Проще говоря транспортные средства, оснащённые подобной системой, во время резкого торможения или обгона работают без перебоев, в то время как электронные системы зачастую не способны поддерживать стабильную работу двигателя внутреннего сгорания в подобных условиях. Отсутствие провалов подачи топлива гарантирует также высокую мощность мотора.

Несмотря на то, что система моновпрыска обладает определёнными преимуществами перед карбюраторами, именно последние на сегодняшний день являются наиболее экономичными механизмами, поскольку во время их работы впрыск топлива происходит по всей камере, благодаря чему используется весь поступающий объем. Именно благодаря этой особенности в холодное время года проще завести автомобиль с карбюраторным двигателем.

Жиклёр карбюратора

Современные карбюраторы состоят из множества деталей, одной из которых являются жиклёры — маленькие детали с отверстиями, расположенными в определённом порядке. Жиклёры делятся на два основных типа: воздушные и топливные. Существуют и другие виды жиклёров — компенсационные, главные, холостого хода и прочие.

Установленная на заводе производительность двигателя достигается за счёт пропускной способности жиклёра. Работоспособность данной детали определяется калибровкой отверстий, в связи с чем жиклёр регулярно очищается от нагара и грязи, причём процедура выполняется очень осторожно и аккуратно, дабы размер отверстий не был изменён.

Жиклёр карбюратора

Экономайзеры и их разновидности

С целью экономии горючего карбюраторы оснащаются экономайзерами, классифицирующимися на два основных типа:

  1. ЭПХХ — экономайзер принудительного холостого хода. Более широко известен под названием электромагнитного клапана.
  2. ЭМР — экономайзер мощностных режимов.

Электромагнитный клапан, или ЭПХХ, устанавливается рядом с воздушным фильтром и состоит из жиклёра холостого хода, пластикового привода и соленоида. Предназначается экономайзер для перекрытия подачи топлива в смесительную камеру. Прекращение подачи горючего через каналы холостого хода возможно при соблюдении нескольких условий: коленвал должен вращаться со скоростью боле 2 тысяч оборотов в минуту, педаль газа должна быть свободна. Активацией и дезактивацией ЭПХХ занимается блок управления, к которому подключаются микровыключатель и система зажигания. Экономайзер позволяет снизить потребление двигателем горючего во время движения автомобиля по горной местности. На подобных трассах осуществляется торможение двигателем, во время которого ЭПХХ прекращает подачу топлива по системе холостого хода. Подобное решение повышает управляемость машины и безопасность движения.

ЭПХХ карбюратора

Состоящий из клапана и расположенной под пружиной мембраны экономайзер мощностных режимов размещается под ЭПХХ. Он отвечает за обогащение топливной смеси. Принцип его работы заключается в подаче топлива к распылителям смесительной камеры и увеличении крутящего момента мотора. Клапан ЭМР прикрыт шариком, упираемым с одной стороны пружиной. Под воздействием давления, нарастающего при работающем двигателе ниже заслонки дросселя, пружина клапан смещает шарик, который закрывает топливный канал, прекращая тем самым ток горючего. Топливо будет поступать в смесительную камеру только при условии снижения давления и газования педалью акселератора.

ЭМР карбюратора

Прокладка карбюратора

Основное назначение прокладок, используемых при установке карбюраторов — уплотнение соединений между впускным коллектором и самим карбюратором. Нередко для обеспечения более надёжного и герметичного соединения используют сразу несколько прокладок: они предотвращают подсос воздуха в двигатель со стороны.

Вам будет интересно  Как правильно завести автомобиль? 6 подробных инструкций для авто с МКПП и АКПП в различных ситуациях

При монтаже карбюраторов используются три основных вида прокладок:

  • Теплоизоляционная. Предотвращает перегрев карбюратора, позволяя понизить его температуру;
  • Армированная. Прочность соединений между теплоизоляционной частью карбюратора и его фланцем увеличивается за счёт таких прокладок;
  • Паронитовая. Высокая температура, излучаемая впускным коллектором, изолируется паронитовой прокладкой.

Самостоятельное изготовление прокладок для карбюратора подразумевает использование паронита либо тонкого металлического листа. Новая прокладка изготавливается аналогично той, которая была установлена на заводе-изготовителе.

Специалисты не советуют устанавливать паронитовые прокладки под карбюраторы, поскольку при попадании на них бензина паронит сильно разбухает и начинает сыпаться, что в итоге может привести к попаданию в карбюратор частиц материала и засорению жиклёров.

Прокладки карбюратора

Диффузор

Выполненная в виде суженой горловины металлическая часть карбюратора — диффузор — отвечает за подачу воздуха в двигатель машины для образования топливно-воздушной смеси. Топливо в диффузор поступает из поплавковой камеры карбюратора под воздействием высокого давления. Поток воздуха, проходящий через горловину диффузора, смешивается с горючим и под давлением подаётся во впускной коллектор силового агрегата.

Диффузор карбюратора

ЭПХХ карбюратора автомобиля

Карбюратор транспортного средства оснащается электронным блоком управления, активирующим ЭМК, который контролирует расход топлива при включении режима принудительного холостого хода. Переключение на данный режим работы осуществляется при торможении двигателем. Давление, нарастающее под дроссельной заслонкой, подаёт по каналам топливо в силовой агрегат.

При спуске машины с возвышенности эффективность режима торможения двигателем снижается в разы. В связи с этим повышается потребление бензина, что провоцирует активацию ЭПХХ, который автоматически прекращает подачу топлива.

Экономайзер карбюратора

ЭПХХ срабатывает при получении от датчика сигнала о закрытой заслонке и увеличении количества оборотов коленчатого вала. В рабочем режиме электромагнитный клапан пребывает до тех пор, пока:

  • При опущенной заслонке дросселя не понизится скорость движения;
  • Не будет выжата педаль газа и набрана скорость движения, что приведёт к отключению экономайзера;
  • Не включится стандартный режим холостого хода и не отключится передача.

Функционирование экономайзера позволяет повысить эффективность режима торможения мотором, обогатить топливную смесь и сэкономить бензин.

Дозирующая система

ГДС карбюратора поддерживает работу ДВС автомобиля во всех режимах за исключением режима с низкой частотой вращения коленвала. Основная задача данной системы — подача порции бензина для образования горючей смеси. По мере открытия заслонки дросселя обогащение топливной смеси происходит очень быстро, поскольку бензин поступает в большем объёме, чем воздух через диффузор. Компенсировать состав смеси горючего можно за счёт предотвращения её обогащения, что делает дозирующая система карбюратора.

Дозаторы

В камеру сгорания мотора бензин подаётся порциями определённого объёма из дозатора карбюратора.

Дозатор карбюратора

Ускорительный насос

Эта механическая система принудительно подаёт бензин в карбюратор при открытых заслонках дросселя. Работоспособность данного узла карбюратора не зависит от потока воздуха, подаваемого диффузором. Обеднение топливно-воздушной смеси происходит при резком разгоне транспортного средства ввиду поступления недостаточного объёма бензина к цилиндрам ДВС. Встраивание ускорительного насоса компенсирует подобные воздействия. Концентрация воздуха и бензина в топливно-воздушной смеси поддерживается насосом, благодаря чему сокращается время разгона и улучшаются динамические характеристики авто.

Ускорительный насос

Электромагнитный клапан

Неотъемлемой частью карбюраторов современных автомобилей является экономайзер. Такие устройства классифицируются на два основных типа, одним из которых является ЭПХХ, или электромагнитный клапан. Разработано такое устройство было в 80-х годах прошлого века с целью снижения потребления горючего карбюраторными двигателями, значительно уступавшими в этом аспекте инжекторным аналогам.

Внедрение электронных элементов стало единственным способом понижения расхода бензина. Разработка ЭМК и некоторых других устройств позволила сэкономить горючее и повысить эффективность карбюратора.

Стабильность холостого хода двигателя обеспечивается ЭПХХ, который приводится в действие электрическим током. Осуществляется это посредством перекрытия каналов, по которым поступает бензин, в режимах работы мотора, которые не требуют потребления топлива. В таких режимах функционируют только клапана силового агрегата и жиклёры, в то время как другие узлы и детали бездействуют.

ЭПХХ и блок управления

Электромагнитный клапан позволяет:

  • При функционировании силового агрегата в режиме принудительного холостого хода сэкономить топливо;
  • Поддерживать стабильный холостой ход автомобиля;
  • Усиление подачи горючего позволяет нормализовать прогрев двигателя авто при запуске;
  • Снизить износ дроссельной заслонки и других узлов двигателя;
  • Продлить срок эксплуатации силового агрегата за счёт оптимизации его работы.

Завихритель

Принцип работы карбюратора строится на вихревом смешении воздушного потока и горючего при помощи завихрителя — небольшой выполненной в форме пластинки детали, оснащённой каналами. Завихритель не является частью внутренней конструкции карбюратора, поскольку устанавливается под него.

Создаваемые деталью воздушные завихрения создают мелкие капли горючего, благодаря чему создаётся топливно-воздушная смесь. Специалисты рекомендуют оснащать подобным устройством все карбюраторы, поскольку оно уменьшает расход горючего.

Завихритель

Игольчатый клапан

Несмотря на небольшие габариты, игольчатый клапан является одной из основных деталей карбюратора. Работоспособность и исправность клапана влияют на функционирование карбюратора, уровень расхода горючего и качество образуемой топливной смеси.

Конструкция клапана проста и состоит из иглы и цилиндрического корпуса. Данный узел очень хрупкий и деликатный, часто выходит из строя. Все его неполадки разделяют на две группы:

  • Недостаточная герметизация корпуса;
  • «Залипание» иглы.

Причиной первой неисправности становится сильный износ седла клапана и иглы, из-за чего количество поступающего в диффузор топлива ничем не ограничивается, что приводит к повышению расхода бензина, не оказывая при этом никакого влияния на работоспособность силового агрегата автомобиля.Полностью противоположная ситуация с «залипанием» иглы, которое сопровождается недостатком горючего для исправного функционирования мотора.

Игольчатый клапан карбюратора

Обогащённая топливно-воздушная смесь

Состав топливной смеси зависит от концентрации воздуха и бензина, которые поступают к цилиндрам ДВС. Интенсивное поступление воздуха и, соответственно, насыщение им жидкого топлива происходит при повышении скорости транспортного средства. В результате концентрация и пропорции воздуха и топлива в составе топливно-воздушной смеси изменяются, что приводит к формированию бедной или богатой смеси.

Подготовка топливной смеси осуществляется в карбюраторе. Если в смеси концентрация горючего выше, чем концентрация воздуха, то её называют богатой или высококалорийной. Скорость сгорания такой смеси очень низкая, из-за чего определённый её объем догорает в глушителе машины.

Нормальной топливная смесь считается при условии, что она состоит из 14 кг воздуха и 1 кг жидкого горючего. При превышении части воздуха топливную смесь считают бедной, части бензина — богатой.

Карбюратор — неотъемлемая часть топливной системы автомобиля, каждая деталь которого заточена под выполнение конкретных функций. Исправная работа всей конструкции обеспечивает нормальное функционирование двигателя транспортного средства и безопасность движения.

Как работает карбюраторный двигатель — принцип работы

Карбюратор — это энергия, отвечающая за подпитку цилиндров топливно-воздушной смесью. Он расположен у впускного коллектора, и его основным источником является подача топливно-воздушной смеси в цилиндры двигателя. Воздушный фильтр расположен непосредственно над карбюратором, который отвечает за очистку воздуха, который затем поступает в цилиндры автомобиля.

Как работает карбюраторный двигатель - принцип работы

Карбюратор работает совершенно иначе, чем нынешние форсунки в двигателях. Топливо доставляется им через горло. Впрыск топлива во впускную систему за счет работы воздухозаборников, которые открываются на несколько миллисекунд.

Под карбюраторным двигателем подразумевают систему внутреннего сгорания,. Как работает карбюраторный двигатель? В такой системе происходит смешивание воздуха с бензином, смесь сгорает, есть возможность регулировать ее расход. На практике. Машины с карбюраторами выходят из моды, на замену им приходят инжекторные двигателя.

Карбюраторы практически больше не используются в автомобильной промышленности из-за экологических ограничений (чистый выхлопной газ), и такие решения по-прежнему распространены в мотоциклах. Идея системы подачи топлива в карбюратор заключается в том, что необходимое количество топлива для создания топливно-воздушной смеси не впрыскивается через форсунку (как в случае системы впрыска топлива), а всасывается из распылителя, расположенного по центру в горловине карбюратора, воздухом, протекающим через него на высокой скорости.

Вам будет интересно  Самые надежные двигатели легковых автомобилей

В системе впрыска компьютер, анализируя сигналы, поступающие от различных датчиков (лямбда-зонд, расходомер), выбирает оптимальную дозу топлива, которая затем будет использоваться для создания топливно-воздушной смеси. В системе подачи карбюратора количество всасываемого топлива определяется только импульсом воздуха в горловине и статическими элементами управления (редукторами, форсунками, эмульсионными трубками — изменение их настроек требует разборки карбюратора и их ручной регулировки).

Карбюратор представляет собой систему, которая состоит из:

Из чего состоит простейший карбюратор

  1. Поплавка.
  2. Камеры поплавка.
  3. Жиклера.
  4. Распылителя.
  5. Дифузора.
  6. Дросельной заслонки.

Карбюратор автомобиля по словам сайта prokarbyrator.ru установлен на впускном коллекторе и отвечает за подачу бензина в двигатель после его смешивания с воздухом. Также прямо над ним находится источник воздуха.

Топливо в карбюратор подается (всасывается) за счет отрицательного давления в горловине, в то время как впрыск впрыскивает топливо во впускной коллектор, открывающийся на несколько миллисекунд.

Карбюратор можно разделить на поплавковую камеру и горловину с проходом. Поплавковая камера и одноименное название от поплавка, который плавает на скопившемся в нем топливе. На рычаге поплавка установлен игольчатый клапан, который перекрывает поток бензина из топливного бака, предотвращает самопроизвольное перетекание топлива из сопла в горловину. Верхний конец местных форсунок находится в горловине выше максимального уровня топлива в поплавковой камере. Бензин просто необходимо всасывать из сопла для воздействия вакуума в самом узком месте.

Потому, когда нажимается педаль акселератора, открывается дроссельная заслонка, двигатель всасывает больше воздуха и больше топлива всасывается из форсунки. Именно в горле всасываемая доза бензина смешивается с воздухом и перемещается во впускной коллектор, а затем в цилиндр, который в данный момент всасывает.

Карбюратор — это не только горловина, дроссельная заслонка и поплавковая камера.

Карбюраторы имеют множество компонентов, обеспечивающих правильное питание двигателя. Оказывается, использование вакуума для всасывания топлива в двигатель не может гарантировать оптимальный состав смеси при всех режимах работы двигателя (холодный запуск двигателя, холостой ход, динамическое ускорение, торможение двигателем). Поэтому карбюраторы оснащены бустерными устройствами, а некоторые из них имеют большее количество проходов.

В каждом горле (проходе) есть дроссель. Однако каждая из этих заслонок может открываться в разной степени. Например, с двухкамерным карбюратором, если нажимается педаль акселератора наполовину, первый дроссель будет наполовину открыт, а второй дроссель будет закрыт. Однако, когда при нажатии на газ сильнее, первый дроссель откроется на 100%, а связанный механизм откроет второй дроссель до соответствующего диапазона. Некоторые конструкции, например, в старых спортивных автомобилях, имели карбюраторы, в которых каждый проход отвечал за питание одного цилиндра.

Виды карбюраторов

  • В зависимости от способа образования смеси карбюраторы принято разделять на пульверизационные и испарительные. Первоначально популярностью пользовались испарительные модификации, однако впоследствии наибольшее распространение получили пульверизационные, которые обеспечивают максимально качественное разбрызгивание смеси в камере сгорания.
  • В зависимости от числа используемых смесительных камер принято выделять одно, двух и четырехкамерные модификации.
  • Также карбюраторы различаются в зависимости от способа и порядка открытия дроссельных заслонок. Так, заслонки в карбюраторах могут открываться принудительно и автоматически. При этом открытие заслонок на вторичной камере может проходить последовательно или параллельно. Всё это непосредственно влияет на конструкцию агрегата, обеспечивая приготовление качественной воздушно-топливной смеси и ее последующее полное сгорание в двигателе.
  • Наибольшей популярностью сегодня пользуются карбюраторы с нисходящим потоком и соответствующим направлением главного воздушного клапана.
  • Также существуют модификации карбюраторов с горизонтальным и восходящим воздушным потоком. Однако подобные разновидности по причине сложной конструкции не получили сегодня должного распространения и встречаются крайне редко.
  • В зависимости от типа камеры принято разделять барботажные, мембранно-игольчатые, поплавковые. На сегодняшний день барботажные карбюраторы уже не используются, а вот мембранно-игольчатые и поплавковые все еще распространены. Мембранные разновидности состоят из нескольких камер, которые соединяются игольчатым клапаном. Именно открытие и закрытие клапанов позволяет регулировать объем поступающей топливной смеси. Поплавковые разновидности имеют одну камеру сгорания с установленным внутри поплавком. Именно такой поплавок и регулирует работу запорного клапана, позволяя поддерживать постоянный уровень топлива в камере.


Управление карбюратором

Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства.

Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается.

Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа.

Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур.

В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения.

По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения.

Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев.

Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.

Устройство карбюратора


Несомненным преимуществом карбюратора является его простота конструкции, он состоит из двух элементов: поплавковой камеры 10 и смесительной камеры 8.

Топливо под давлением по трубке 1 подается в поплавковую камеру 10, где находится поплавок 3 и запорная игла 2. Такая игла фактически является простейшим клапаном, который регулирует уровень топлива в камере. Наличие такого клапана позволяет обеспечить постоянный уровень топлива в поплавковой камере в процессе работы двигателя, а, следственно, подача бензина в цилиндры осуществляется равномерно. А благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление.

Вам будет интересно  Объем масла в двигателе – на самом деле, вопрос не такой простой

Затем топливо поступает через жиклёр 9 в распылитель 7. При этом количество топлива, которое выходит из распылителя, зависит от степени вакуума, образовавшегося в диффузоре и диаметре проходящего отверстия в жиклере.

При впуске давление в цилиндрах уменьшается. Воздух из окружающей среды поступает в цилиндр через смесительную камеру 8, где расположен диффузор 6 (трубка Вентури), и впускной трубопровод, который распределяет готовую смесь по цилиндрам.

Распылитель находится в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает мах значения, а давление падает до мin значения. Выход топлива из распылителя осуществляется за счёт разности давлений.

Управление карбюратором и дроссельной заслонкой 5 может выполняться исключительно механически через связь с педалью газа, так и различными автоматическими системами, которые устанавливались на поздних модификациях в карбюраторных двигателях. Наибольшее распространение получила система управления карбюратором с металлическим тросом, которая отличается простотой конструкции и надежностью.

Подача воздуха происходит путем открытия и закрытия воздушной заслонки. Такая заслонка на большинстве двигателей имеет полуавтоматических ход. В процессе эксплуатации работа используемой воздушной заслонки может нарушаться, что приводит к переобогащению смеси или ее обеднению. Именно поэтому в ходе эксплуатации такого карбюраторного двигателя необходимо регулярно производить осмотр и соответствующую регулировку воздушной заслонки и всего карбюратора.

Одной из разновидностей карбюраторов являются эмульсионные варианты, в которых в распылитель поступает уже не жидкое топливо, а эмульсия, полученная из воздуха и топлива. Считается, что эмульсионные карбюраторы обеспечивают максимальный коэффициент полезного действия, что достигается за счёт улучшенного распыления бензина в воздушной смеси.

Обогащение смеси в карбюраторе

При запуске холодного двигателя смесь необходимо обогатить. В старых машинах был так называемый дроссель, который приходилось включать вручную в кабине водителя. С другой стороны, многие карбюраторы на автомобилях, выпущенных в 1990-х годах, также имели электронный контроль обогащения.

Без всасывания из-за небольшого потока воздуха через горловину всасывание достаточного количества бензина невозможно.

Другие типы карбюраторов снабжены дополнительным каналом подачи топлива возле дроссельной заслонки непосредственно из поплавковой камеры, с клапаном, перекрывающим канал после прогрева двигателя. Форсунка холостого хода также используется для обогащения смеси, что за счет подачи дополнительного топлива позволяет поддерживать соответствующие обороты двигателя.

Регулировка карбюратора

Карбюраторный двигатель отличается простотой конструкции, однако подобная система впрыска топлива неизменно требует исправной работы всех механизмов и узлов. Нарушение настройки карбюратора, а подобные проблемы неизменно возникают в процессе эксплуатации этого механизма, приводят к ухудшению приемлемости, экономичности, при этом отмечается увеличение показателей токсичности отработанных газов. Именно поэтому нужно пристально следить за состоянием работы карбюратора и при необходимости вносить соответствующие корректировки.

Автовладельцу при эксплуатации автомобиля с карбюраторным агрегатом доступно две регулировки путем изменения положения винта количества и винта качества. Винт количества отвечает за показатель оборотов на холостом ходу. Тогда как изменение положения винта качества позволяет регулировать степень обогащения топливно-воздушной смеси.

В редких случаях могут отмечаться серьезные поломки, в особенности при появлении неучтенного подсоса воздуха или же нарушении герметичности клапана и системы холостого хода. Всё это приводит к необходимости диагностики и ремонта карбюратора силами специалистов сервисного центра.

Кто изобрел первый карбюратор?

Первый в мире карбюратор был изобретен совместно венгерским инженером и изобретателем Яношем Чонка и венгерским физиком Донатом Банки в 1893 году.

Изобретение Банки и Чонкой карбюратора внесло большой вклад в развитие автомобильной промышленности, т.к. до этого момента не было придумано более эффективного способа правильно смешивать топливо и воздух для двигателя. Ходят слухи, что идею для создания карбюратора Банки позаимствовал у цветочницы, когда случайно обратил внимание на то, как она опрыскивает свои цветы водой изо рта.

Преимущества и недостатки

  • Если говорить о преимуществах карбюратора, то можем отметить простоту конструкции и надежность. В такой системе питания используются простые механизмы, которые управляются механически и практически не имеют подвижных частей. Фактически, ломаться в карбюраторе нечему, поэтому подобный узел отличается надежностью и долговечностью.
  • Если сравнивать карбюраторный мотор с инжекторным, то из преимуществ можно отметить лучшую работу при низких температурах и устойчивый запуск в жару и холод. Регулировка карбюратора не представляет сложности. Имеется два винта, изменение положения которых позволит внести необходимые корректировки в работу силового агрегата.

Однако и недостатки у двигателей данного типа всё же имеются:

  • В первую очередь это зависимость работы силового агрегата от качества топлива. При наличии в бензине липучих посторонних примесей, может забиваться распылитель, что приводит к неровной работе силового агрегата.
  • Следует сказать, что в сравнении с инжектором карбюраторные моторы существенно проигрывают в вопросах мощности. Карбюратор не способен обеспечить качественное разбрызгивание топлива в камере сгорания, соответственно в сравнении с инжектором такой мотор будет иметь увеличенный расход топлива, а также меньшие показатели мощности с одинакового объема.
  • В простоте карбюраторных двигателей кроются как преимущества, так и недостатки. Если в инжекторе можно внести программой какие-либо изменения в работу силового агрегата, то у карбюратора какая-либо регулировка работы системы питания двигателя существенно затруднена.

На сегодняшний день карбюраторные двигатели практически полностью вытеснены инжекторными агрегатами, которые отличаются улучшенными динамическими и топливно-экономическими показателями работы. Впрочем, многие автовладельцы по достоинству оценили простоту и надежность карбюраторных двигателей и с удовольствием используют машины с таким типом силовых агрегатов и по сей день.

Дополнительный впрыск даже при резком ускорении

Когда нужно быстро ускориться, педаль газа нажимается до пола. Чтобы удовлетворить повышенные потребности в топливе и обеспечить плавное и быстрое ускорение, карбюратор также имеет устройство, называемое ускорительным насосом. Когда газ резко снижается, топливо поступает в горловину карбюратора. В этом случае можно говорить о впрыскивании бензина в проход, а не о его всасывании.

Другая система обогащения — это та, которая увеличивает дозу топлива при работе с полной нагрузкой. При этом карбюратор имеет дополнительную скоростную форсунку, которую можно закрыть игольчатым клапаном. Другое решение — так называемый эмульсионные трубки. Топливо вытекает из них через отверстия в стенках. С другой стороны, отверстия расположены таким образом, что при более низких скоростях вращения бензин проходит через меньшее количество отверстий, а при высоких нагрузках — через гораздо большее количество отверстий.

Впускная система карбюраторного двигателя

1 — трубопровод; 2 — отверстие в поплавковой камере; 3 — диффузор; 4 — распылитель; 5 — дроссельная заслонка; 6 — смесительная камера; 7 — жиклер; 8 — поплавковая камера; 9 — поплавок; 10 — игольчатый клапан.

Диффузор (короткий патрубок, суженный внутри) увеличивает скорость воздушного потока в центре смесительной камеры, чем достигается увеличение разряжения у носика распылителя.

Дроссельная заслонка регулирует количество горючей смеси, подаваемой в цилиндры двигателя, уменьшая или увеличивая проходное сечение смесительной камеры.

Простейший карбюратор работает следующим образом. При такте впуска, из-за создаваемого поршнем разрежения, воздух через воздушный патрубок поступает в диффузор. В диффузоре скорость воздуха, а следовательно, и разряжение увеличиваются. Под действием перепада давлений между поплавковой камерой и диффузором топливо через жиклер распылителя поступает в диффузор, подхватывается потоком воздуха, распыляется и испаряется, образуя топливовоздушную смесь. Из смесительной камеры горючая смесь по впускному трубопроводу поступает в цилиндры двигателя. По мере открытия дроссельной заслонки скорость потока воздуха и разряжение в диффузоре возрастают, что увеличивает расход топлива. Однако необходимого повышения расхода топлива не происходит, горючая смесь обогащается. При работе двигателя на различных режимах простейший карбюратор не может обеспечить горючую смесь постоянного состава.

Источник https://autoclub.su/chto-takoe-karbyurator/

Источник https://avto-layn.ru/selskohozyajstvennaya/chto-takoe-karbyurator.html

Источник

Источник

Author: mag

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *