Содержание
Какой двигатель лучше: атмосферный или турбированный
Основные отличия турбированного двигателя от атмосферного
Если атмосферный двигатель подразумевает впуск воздуха посредством разряжения, созданным поршнем, то с турбированным мотором все иначе. Для максимально эффективного сгорания топлива необходимо большое количество воздуха, чего невозможно добиться от атмосферника, поэтому нужно было воздух, в большом объеме, «затолкать».
В атмосферном силовом агрегате крутящий момент и мощность во многом зависит от объема цилиндров, что и стало основным отличием от турбомоторов.
Автомобиль с каким двигателем лучше выбрать
Споры между автолюбителями и экспертами из разряда: «что лучше — турбированный или атмосферный мотор» не утихают и по нынешнее время. Движки, оснащенные турбогенераторами, выпускаются большим количеством автопроизводителей. Это связано со всевозрастающим спросом на машины с высокими динамическими, тяговыми и мощностными качествами. Проще говоря, многие мечтают иметь в своем гараже упрощенную версию спорткара, на которую был бы установлен надежный и очень мощный силовой агрегат. Однако не во всех случаях его преимущества приведут к однозначному выигрышу с точки зрения всех критериев.
Однозначный ответ на вопрос, какой же двигатель лучше из описанных 2-х вариантов, дать сложно. Если речь идет о том, чтобы ежедневно выжимать из своего авто максимум мощности и чувствовать спортивную динамику, тогда выбор должен быть только в пользу турбо версии. Ведь с каждого литра рабочего объема силового агрегата удается извлечь в 2-2,5 раза больше мощности, традиционно измеряемой лошадиными силами.
В то же самое время, ресурс у таких движков гораздо меньше — это обусловлено особенностями их конструкции и условиями эксплуатации. Турбомотор гораздо чаще может потребовать ремонта, к тому же, атмосферник более экономичный по потреблению горючего. Также стоит иметь в виду, что из-за его конструктивной простоты он потребует меньше затрат в случае поломки и необходимости ремонта, то есть, он однозначно надежнее по отношению к аналогу с турбиной.
Делаем следующий вывод: хотя турбина дает больше мощности, она потребует большей заботы и регулярного обслуживания, а, возможно, более дорогостоящего ремонта. Прежде всего, это контроль качества заливаемого в бак горючего, применение специальных масел, а также меньший эксплуатационный ресурс компрессора. Атмосферник проигрывает по показателю мощности и динамики, зато является более безотказным. Также он однозначно экономичнее, то есть содержание такое машины обойдется дешевле ее обладателю.
Особенности турбированных двигателей
Принцип работы турбины состоит в принудительном нагнетании воздуха под давлением в цилиндры. Такое действие позволяет увеличить рабочий объем камеры сгорания за счет сильного сжатия, поэтому при равном объеме двигателя, разница в мощности между атмосферником и турбомотором колоссальная.
Главные предпосылки появления турбированных моторов:
- Невозможность существенного увеличения мощности без увеличения объема и количества цилиндров (отсюда мы имеем агрегаты V8 и V12)
- «Выжимание» максимальной мощности с помощью уменьшения камеры сгорания увеличивает степень сжатия, а значит работа двигателя без детонации невозможна. Детонация разрушает поршни.
- Любые манипуляции по увеличению мощности атмосферника увеличивают расход топлива, а также делают невозможным комфортную эксплуатацию во всем диапазоне оборотов двигателя.
Изначально в массовое производство был запущен дизельный турбированный двигатель — такие моторы «наматывали» миллионы километров без особых проблем. В 80-х годах прошлого века среди легковых автомобилей начали появляться бензиновые турбоагрегаты.
Стоимость таких автомобилей существенно отличалась от обычных. До 90-х годов широко использовались механические нагнетатели, приводящиеся в движение через ремень от коленвала. Конструкция довольно проста и надежна, о чем свидетельствует яркий пример в лице двигателя Mercedes-Benz M111 E23 Compressor.
Позднее решено было переходить на турбокомпрессор, работающий от выхлопных газов, так как механический нагнетатель забирал значительную мощность на раскручивание лопастей.
Главные конструктивные особенности турбомотора
Турбина чаще всего имеет форму «улитки», размещается во фронтальной части агрегата. Если вы не знаете, как отличить турбированный двигатель от атмосферного, здесь все просто: ищите «улитку» под капотом. Обычно не заметить ее сложно, так как она выбивается из монолитных очертаний самого агрегата.
Схема работы турбокомпрессора
Стандартная конструкция подразумевает подключение компрессора к системе выхлопа. Выхлопные газы раскручивают крыльчатку устройства, что позволяет компрессору нагнетать более высокое давление воздуха в системе. Это изменяет характеристики топливной смеси и влияет на работу ЭБУ. Так мотор прямо во время поездки меняет свои характеристики.
Проблема заключается в том, что турбокомпрессор – очень нежная деталь. Поэтому при любой аварии она ломается. Также после 100-150 тысяч км эксплуатации часто требуется замена турбины. Еще одна неприятность – использование некачественных масел в двигателе. В этом случае турбина плохо смазывается и очень быстро выходит из строя.
Как работает турбина
Турбина состоит из двух частей:
- Холодная – всасывает и раскручивает впускной воздух,
- Горячая – раскручивается воздух посредством движения выхлопных газов.
В турбине установлен картридж с лопастями, которые от движения воздуха раскручиваются вплоть до 150 000 оборотов в минуту, создавая давление. Вращаются лопасти на подшипниках, а за смазывание и охлаждение отвечает подача масла с двигателя.
Так как при резком повышении давления воздух сильно нагревается, был изобретен интеркуллер, охлаждающий воздух до нужной температуры.
Во впускной магистрали установлен клапан, отвечающий за сброс избыточного давления впускного воздуха (Blow off), а также вестгейт, ограничивающий количество отработанных газов, попадающих в турбину, что позволяет избежать резкого роста повышения оборотов крыльчатки (простыми словами-ограничитель).
Работа турбины крайне проста: в горячую часть турбины попадают отработанные газы и раскручивают крыльчатку. В холодной части раскрученная крыльчатка всасывает большое количество воздуха, который проходит через интеркулер, и в охлажденном состоянии попадает в цилиндры. После того, как отработанные газы раскрутили турбину, они идут далее по выпускной магистрали.
Сильные и слабые стороны атмосферных ДВС
Атмосферный двигатель существует уже давно, а вот его турбированный конкурент появился относительно недавно. Во многом из-за этого автолюбители даже не пытаются искать разницу и какое-то ключевое различие, а попросту выбирают то, чему доверяют. Никто не спорит, что атмосферники действительно имеют целый ряд преимуществ. Главными из них являются:
- продолжительный срок эксплуатации;
- упрощённая конструкция и несложное устройство;
- доступный ремонт;
- возможность обслуживания собственными руками;
- адекватный расход масла;
- отсутствие глобальных проблем в период эксплуатации.
Такие моторы способны преодолевать огромное количество километров. Их пробег при адекватном уходе и эксплуатации переваливает за 1 миллион. Нужно только вовремя менять масла, осуществлять правильный уход и своевременно снимать старые фильтры. При таком отношении даже через 500 – 600 тысяч километров пробега ни о каком капитальном ремонте думать не придётся. Детали и узлы двигателя атмосферного типа очень устойчивы к износу, они долгое время сохраняют свою работоспособность. Наиболее надёжные атмосферники способны пережить не один кузов. То есть бывали случаи, когда двигатель снимали с одной машины и ставили на другую, поскольку сам кузов уже выработал свой ресурс, а ДВС нет.
Безотказность и простота эксплуатации являются основными козырями атмосферных двигателей. Они не требуют максимально качественного топлива или уникальных высококачественных смазочных материалов. Даже если при эксплуатации машины на плохом топливе что-то выходит из строя, вернуть атмосферник к жизни не составит большого труда. Более серьёзные требования предъявляются в отношении грамотного выбора и использования моторного масла. Обычно его меняют через 15 – 20 тысяч километров пробега. Для атмосферников оптимальным решением считается качественная синтетика и полусинтетика, соответствующая требованиям автопроизводителя.
Интересен и тот факт, что в атмосферных ДВС вполне допускается применение минеральных масел при отсутствии синтетического или полусинтетического аналога. С двигателями, на которых стоит турбокомпрессор, такой номер не пройдёт. Минералку в них заливать категорически нельзя. За счёт упрощённой конструкции множество автовладельцев самостоятельно занимаются профилактическими и ремонтными работами у себя в гараже. А если пришлось обратиться в автосервис, будьте уверены, что услуги СТО при работе с атмосферным мотором окажутся намного дешевле, чем с турбомотором при аналогичных неисправностях. Но не стоит думать, что атмосферные двигатели настолько идеальные, и никаких недостатков у них нет. Если сравнивать с турбированными силовыми агрегатами, то проявляются следующие слабые стороны:
- достаточно внушительный вес всей конструкции;
- более низкие параметры мощности;
- меньший крутящий момент;
- отсутствие возможности работы под большой нагрузкой;
- проблемы с эксплуатацией в условиях большой высоты (там разряжённый воздух, из-за чего кислород плохо проникает в цилиндры);
- на малых оборотах не всегда происходит эффективное всасывание, потому двигатель ведёт себя нестабильно.
Мировое автопроизводство знает множество примеров того, как компании создают высокомощные двигатели без использования турбокомпрессора. Турбина не всегда является обязательным элементом для создания действительно производительного двигателя.
Турбированный двигатель, плюсы и минусы
Сначала о преимуществах:
- Возможность с малого объема “выжать” большую мощность, зачастую это 100 л.с. на каждый литр объема.
- Крутящий момент уже с холостых оборотов дает уверенную тягу, но только в случае, если турбина маленькая, она раскручивается быстрее.
- Диапазон крутящего момента широкий.
- Расход топлива, при одинаковой мощности с атмосферным моторов, явно ниже.
- Возможность увеличивать мощность с помощью прошивки на 20-30% без вреда ресурсу и комфорту движения.
- Ресурс турбины современных авто едва достигает 100 тыс.км.
- Возникновение «турбоямы», процесса между провалом и резким набором скорости из-за ожидания раскрутки турбины.
- Стоимость ремонта дороже, обслуживать двигатель нужно чаще.
- Возрастает потребность в качественном масле и топливе.
Преимущества и недостатки современного турбомотора
Перед тем, как мы приступим к анализу плюсов и минусов турбодвигателя, хотелось бы еще раз обратить ваше внимание на один нюанс. Как утверждают маркетологи, доля реализуемых новых автомобилей с турбонаддувом сегодня существенно увеличилась.
Более того, многочисленные источники делают акцент на том, что турбодвигатели все больше и больше теснят «атмосферники», автолюбители зачастую выбирают именно «турбо», так как считают атмосферные двигатели безнадежно устаревшим типом ДВС и т.п. Давайте разбираться, так ли хорош турбомотр на самом деле.
Плюсы турбодвигателя
- Начнем с явных плюсов. Действительно, турбодвигатель легче по весу, меньше по рабочему объему, но при этом выдает высокую максимальную мощность. Также моторы с турбиной обеспечивают высокий крутящий момент, который доступен на низких оборотах и является стабильным в широком диапазоне. Другими словами, турбомоторы имеют ровную полку крутящего момента, доступную с самых «низов» и до относительно высоких оборотов.
- В атмосферном двигателе такой ровной полки нет, так как тяга напрямую зависит от оборотов двигателя. На низки оборотах атмомотор обычно выдает меньший крутящий момент, то есть его нужно раскручивать для получения приемлемой динамики. На высоких оборотах мотор выходит на максимум мощности, но крутящий момент снижается в результате возникающих естественных потерь.
- Теперь несколько слов об экономичности турбодвигателей. Такие моторы и правда расходуют меньше топлива по сравнению с атмосферными агрегатами в определенных условиях. Дело в том, что процесс наполнения цилиндров воздухом и топливом полностью контролируется электроникой.
Получается, ЭБУ следит за тем, чтобы соотношение компонентов смеси было оптимальным на любых режимах работы турбированного ДВС, благодаря чему достигается полноценное сгорание заряда и происходит отдача максимума полезной энергии. В случае с атмосферными двигателями наполнение зависит как от оборотов коленвала, так и от температуры наружного воздуха, атмосферного давления и ряда других факторов. - Если учесть небольшой вес самого агрегата с турбиной, доступную тягу на низких оборотах и отсутствие зависимости от внешних факторов, турбомотор закономерно расходует в штатных режимах эксплуатации меньше топлива. При этом следует помнить, что данное преимущество полностью исчезает в том случае, если постоянно ездить в режиме «газ в пол». Тогда расход топлива на турбодвигателе может оказаться даже большим, чем у атмосферных аналогов.
Минусы турбированного ДВС
Итак, с основными плюсами разобрались. Что касается минусов, они также присутствуют. Вполне очевидно, что турбомотор сложнее как в плане электроники и исполнительных устройств, так и в плане реализации самой схемы турбонаддува. Повышенные требования к качеству топлива и моторного масла тоже никуда не делись.
Дело в том, что небольшой по размерам и объему агрегат работает в условиях высоких механических и тепловых нагрузок. Давление наддува и температура в цилиндрах намного выше по сравнению с атмосферными двигателями, что означает ускоренный износ турбомотора.
Производители учитывают разные нюансы, закладывая больший запас прочности в агрегат, но во время ремонта турбодвигателя стоимость усиленных деталей получается ощутимо выше. Также двигатель с турбиной имеет большое количество датчиков и магистралей, а также дополнительных систем, что усложняет диагностику в случае возникновения неисправностей.
- Очень важным моментом является ресурс самой турбины. Турбонагнетатель повсеместно устанавливается на современные ДВС, окончательно вытеснив механический компрессор. При этом турбина на бензиновом двигателе обычно «ходит» всего около 150 тыс. км, на дизеле этот показатель в среднем составляет до 250 тыс. км. Затем турбокомпрессор нуждается в дорогом ремонте или полной замене.
- Что касается известной проблемы в виде «турбоямы» или «турболага», на современных двигателях этот недостаток практически устранен посредством установки турбин с изменяемой геометрией, путем использования технологий «би-турбо» и т.д. Почему практически, а не до конца? Дело в том, что идеальной остроты отклика во время дозирования тяги в процессе дросселирования, которая свойственна атмосферным моторам, все равно нет. Параллельно с этим более сложные системы турбонаддува требуют повышенных затрат, создают определенные затруднения, которые связаны с обслуживанием и ремонтом.
Масло важнее всего
Второй опасностью для турбины может стать плохое масло. При перегреве оно теряет свойства и образует нагар и отложения, которые губительны для тонкого и сложного механизма впуска. Поэтому термонагруженные двигатели с турбонаддувом требуют к себе почтительного отношения. В мотор необходимо заливать только рекомендованные производителем масла и строго соблюдать сроки их замены.
Поэтому при соблюдении всех правил эксплуатации ресурс турбонаддува приближается к 150–200 тысячам километров. Это, конечно не касается спортивных дрифткаров, водители которых сжигают турбины на моторах гораздо чаще.
Турбонаддув – какой у него принцип работы?
Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.
Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.
Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.
Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.
Устройство
Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.
Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.
Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.
Его устройство выглядит следующим образом:
Устройство турбонагнетателя: 1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.
Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.
Как работает турбонаддув
Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.
Принцип работы турбонаддува
Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.
Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.
О отрицательных особенностях турбонаддува
Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.
Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.
Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.
Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).
Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.
В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).
При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).
Видео — как работает турбина:
Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.
Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).
Без сомнений каждый из нас автолюбителей хотя бы раз за свою жизнь замечал на вполне обычном на первый взгляд автомобиле шильдик с заветной надписью «turbo». Производители будто бы специально делают эти надписи крохотного размера, да ещё и в местах неприметных их размещают. А человек, который знает толк в подобных технологиях, обязательно заинтересованно остановится на пару минут. Ниже мы подробно расскажем о том, почему же такой интерес вызывает маленькая неприметная надпись «turbo».
- Технология турбонаддува
- Принцип работы турбонаддува
- Разновидности турбонаддува
- Конструктивные особенности турбонаддува
- Недостатки турбонаддува
Технология турбонаддува
На данное время турбонаддув является одной из самых эффективных систем, повышающих мощность двигателя, при этом частота вращения коленчатого вала не увеличивается как и объём цилиндров. Кроме повышения мощностных характеристик двигателя, турбонаддув также способствует экономии топлива, с расчётом на каждую единицу мощности, и снижению токсичности вырабатываемых газов за счёт того, что топливо сгорает полностью.
Система турбонаддува устанавливается как на бензиновые так и на дизельные двигатели. Но наибольшая эффективность турбонаддува проявляется именно на дизельных моторах. Достигается такой эффект за счёт высокой степени сжатия дизельного движка и достаточно низкой частоты вращения коленчатого вала. Факторы, которые сдерживают применение турбонаддува на бензиновых двигателях на максимально возможном уровне – это возможная детонация, связанная с резким увеличением частоты оборотов двигателя, а также высокая температура отработанных газов, которая почти в два раза превышает показатели дизельных собратьев, и соответственно сильный нагрев турбонагнетателя.
Несмотря на конструктивные различия отдельных систем, выделим общее устройство турбонаддува – это воздухозаборник, затем воздушный фильтр, дроссельная заслонка, турбокомпрессор, интеркулер, впускной коллектор. Все данные элементы объединены между собой соединительными патрубками и напорными шлангами.
Принцип работы турбонаддува
Работа системы турбированного наддува основывается на эксплуатировании энергии отработанных газов. Отработанные газы вращают колесо турбины, которое далее посредством роторного вала вращает колесо компрессора. Колесо компрессора сжимает воздух и выталкивает его в систему. Сжатый и нагретый воздух охлаждается интеркулером и далее поступает в цилиндры мотора.Не смотря на то, что у турбонаддува нет жёсткой связи с коленвалом двигателя, эффективность нагнетательной системы по многим аспектам зависит от количества оборотов двигателя. Пропорционально с увеличение частоты вращения коленчатого вала, увеличивается и энергия отработанных газов – турбина вращается быстрее, больший объём сжатого воздуха подаётся в цилиндры мотора.
В силу своих конструктивных особенностей у турбонаддува имеются и свои негативные проявления, среди которых можно выделить задержку прироста мощности двигателя при резком нажатии педали акселератора – эффект турбоямы, а также резкое увеличение давления наддува после выхода из турбоямы – турбоподхват. Эффект турбоямы обусловлен инерционностью системы (чтобы повысить давление наддува, в момент резкого нажатия педали газа, необходимо определённое время), которая ведёт к разности между необходимой мощностью и производительностью компрессора. Есть несколько способов, которые в состоянии решить данную проблему:
– установка турбины с изменяемой геометрией;
– установка двух компрессоров с последовательным или параллельным расположением (twin-turdo или bi-turdo);
– комбинированный наддув.
Турбина с изменяемой геометрией необходима для оптимизирования потока отработанных газов за счёт конвертации площади входного канала. Такая технология нашла широкое применение в дизельных двигателях с турбонаддувом TDI от компании Volkswagen.
Система, включающая в себя два параллельных турбокомпрессора, применяется зачастую на мощных V-образных двигателях (один компрессор на каждый ряд цилиндров). Система работает таким образом, что инерция двух маленьких турбин гораздо менее подааётся инерции чем одна большая. С установкой на двигатель двух последовательно расположенных турбин, максимальная производительность системы достигается разными турбокомпрессорами на разных частотах двигателя. Некоторые автомобильные производители заходят ещё дальше, устанавливая последовательно три турбокомпрессора – система triple-turbo от BMW и даже четыре – quad-turbo от Bugatti.
Комбинированный наддув объединяет в себе механический и турбонаддув. На низких оборотах коленвала двигателя сжатие воздуха производится механическим нагнетателем. С возрастанием оборотов механический нагнетатель передаёт эстафету турбокомпрессору, отключаясь при этом. Яркий пример такой системы – это двойной наддув TSI от Volkswagen.
Разновидности турбонаддува
Современное автомобилестроение насчитывает два основных вида турбин для двигателя: одинарные и двойные. Одинарные турбины устанавливаются, как правило, на двигатели с рядным расположением цилиндров: здесь происходит использование энергии выхлопных газов сразу от всех цилиндров двигателя с подачей воздуха также во все цилиндры.
Двойными турбинами оснащаются силовые агрегаты V-образного расположения цилиндров. Они включают в себя два турбокомпрессора, подающих воздух в определённые цилиндры. Порой для роста мощности двигателя в таких турбинах используется перекрёстный выпускной коллектор, аккумулирующий выхлопные газы из всех цилиндров двигателя, далее направляя этот поток увеличенной мощности к компрессорам, повышая давление в турбине, что соответственно увеличивает и мощность двигателя. Революционным прорывом стала технология, позволяющая изменять геометрию турбины. Она позволяет перенаправлять геометрию сопла турбины, при этом создавая более мощные воздушные потоки уже на низах, в результате чего мощность двигателя возрастает многократно.
Конструктивные особенности турбонаддува
Если вести речь о конкретных модификациях двигателя, а также о расположении разнообразных элементов в подкапотном пространстве, турбокомпрессор может оснащаться рядом дополнительных элементов. Рассмотрим две детали системы турбонаддува, как Wastegate и Blow-Off.
Клапан Blow-off
Блоу-офф – это перепускной клапан. Данный механизм устанавливается в воздушной системе. И располагается он между дроссельной заслонкой и выходом из компрессора. Основной задачей клапана блоу-офф является аредотвращение перехода компрессора в режим работы surge. Для такого режима характерно резкое закрытие дроссельной заслонки. Если описать процесс простыми словами, то скорость потока воздуха и его расход в системе резко понижаются, но турбина по инерции ещё продолжает вращаться. По инерции турбина обладает такой скоростью вращения, которая совсем не соответствует новым запросам двигателя и снизившемуся воздушному расходу.
Такие регулярные циклические резкие перепады давления воздуха могут плачевно сказаться на всей системе. Диагностировать такие скачки можно по характерному звуку, прорывающегося через компрессор, воздуха. Со временем выходят из строя опорные подшипники турбины, ибо на них приходится максимальная нагрузка в результате резких перепадов давления при сбросе газа и дальнейшем режиме работы турбины в инерционном состоянии. Blow-off устраняет данную проблему.
Он является своеобразным детектором перепада давлений в коллекторе, затем срабатывает за счёт вмонтированной пружины. Это выявляет момент резкого перекрытия дросселя. Если произошло резкое закрытие дросселя, клапан стравливает в атмосферу лишний воздух, который появился в воздушном тракте от переизбытка давления. Это существенно повышает безопасность турбокомпрессора и уберегает его от избыточных нагрузок, приводящих к последующему разрушению.
Клапан Wastegate
Данное технологическое решение является механическим клапаном. Вайстгейт устанавливается либо на части турбины, либо непосредственно на впускном коллекторе. Основной функцией данного устройства является обеспечение контроля за давлением, создаваемым турбокомпрессором. Отметим, что некоторые из дизельных силовых агрегатов в своей конструкции обходятся без вайстгейта. Для бензиновых моторов, в большинстве своём, этот клапан просто обязательная необходимость.
Главная задача вайстгейта заключается в обеспечении беспрепятственного выхода отработанных газов из системы, не проводя их через турбину. Запуск выхлопных газов в обход турбины позволяет контролировать необходимое количество их энергии. Взаимосвязь, как на ладони, ведь именно отработанные газы вращают через коленчатый вал колесо компрессора. Благодаря этому способу контроль за давлением, создаваемом в компрессоре, стало осуществлять гораздо проще.
Wastegate бывает как встроенный, так и внешний. Встроенный вайстгейт уже имеет заслонку, встроенную в турбинный хаузинг. Хаузинг – это улитка турбины, которую в народе так привыкли называть. Дополнительно в wastegate установлен пневматический актуатор, а также от него идут тяги к дроссельной заслонке. Wastegate внешнего типа является клапаном, что установлен перед турбиной на выпускной коллектор. Не можем не заметить, что внешний вайстгейт обладает одним неоспоримым преимуществом в сравнении с его встроенным братом. А дело заключается в том, что обходной воздушный поток, сбрасываемый им, можно возвращать в выхлопную систему обратно, а на спорткарах можно просто осуществить прямой выброс в атмосферу. Это заметно улучшает прохождение выхлопных газов через турбину благодаря разнонаправленным потокам.
Недостатки турбонаддува
В силу своих конструктивных особенностей у турбонаддува имеются и свои негативные проявления, среди которых можно выделить задержку прироста мощности двигателя при резком нажатии педали акселератора – эффект турбоямы, а также резкое увеличение давления наддува после выхода из турбоямы – турбоподхват.
Повышение мощности двигателя с сохранением его общих характеристик, то есть форсирование приводит к интенсивному износу узлов, в следствии снижается ресурс силового агрегата. Турбинам необходимо также и применение специальных сортов моторных масел и строгое соблюдение сроков проведения технического обслуживания, зарекомендованных производителем. Ещё более прихотлив воздушный фильтр. Возрастающее давление картерных газов существенно снижает ресурс турбины. Если при таких условиях турбина будет продолжать работать длительный период, то это неизбежно приведёт к масляному голоданию и последующей поломке турбокомпрессора. А если будет повреждён этот агрегат, то есть немалый процент выхода из строя всего силового агрегата.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Принцип работы турбонаддува
Схема работы турбонаддува двигателя
Принцип работы системы турбонаддува заключается в следующем:
- Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
- Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
- Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
- В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.
Читайте также: Виды и принцип работы механического нагнетателя
В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.
Принцип работы турбонаддува
Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.
Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.
Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования.
Читайте также: Популярные способы увеличения мощности двигателя.
Эксплуатация и техническое обслуживание автомобильных турбин
С каждым годом во всем мире ужесточаются экологические требования к выхлопу современных автомобилей. В результате все больше новых автомобилей оснащаются турбинами. Таким образом автопроизводители пытаются выпускать автомобили, которые будут соответствовать жёстким экологическим нормам. Увы, без использования турбин в современных автомобилях добиться сокращения уровня вредных веществ в выхлопе без миллиардных инвестиций невозможно.
Система охлаждения и устройство турбонаддува
Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.
Особенности эксплуатации турбированных двигателей
На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:
- Автомобиль движется с небольшой постоянной скоростью.
- Турбина вращается в соответствующем режиме.
- При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
- После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.
Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.
Виды систем турбонаддува
Производители разработали различные способы избавления от «турбоямы»:
- Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
- Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
- Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
- Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.
Что такое турботаймер и для чего он необходим
Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.
Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.
Читайте также: Устройство и принцип работы ДМРВ
Что такое турбояма или турболаг
Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.
На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.
Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто.
Читайте также: Чем отличается турбина от компрессора и что лучше?.
Что такое турбо-яма?
Стоит добавить, что крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.
Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители, так или иначе, смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.
Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.
Заключение
Сейчас выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.
Источник https://vmyatynnet.ru/na-zametku/turbomotor.html
Источник https://scart-avto.ru/remont/turbonadduv-chto-eto-takoe-v-avtomobile-printsip-raboty/
Источник
Источник